• 제목/요약/키워드: Heterojunction structure

Search Result 131, Processing Time 0.027 seconds

Electrical Properties of ZnTe-lnSb Heterojunctions (ZnTe-InSb Heterojunction의 전기적 특성)

  • 김화택
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.12 no.4
    • /
    • pp.35-40
    • /
    • 1975
  • The Zn7e-lnSb heterojunctions was prepared by interface alloying technique. The structure of this beterojunction had p-i-n which semi-insulating ZnTe laver at interface of this heterojunction was formed by diffusing In of InSb into ZnTe crystal. The current transport mechanism of this heterojunction was Spacecharge-Limited-Current(SCLC) mechanism by hole at semi-insulating ZnTe layer. The hole wart injected from valence band of p- type SnTe crystal. Orange color electroluminescence was observed at this heterojunction when forward and reversed bias voltage applied.

  • PDF

An Ebers-Moll Model for Heterojunction Bipolar Transistor's (이종접합 쌍극성 트랜지스터의 Ebers-Moll 모델)

  • 박광민;곽계달
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.3
    • /
    • pp.88-94
    • /
    • 1993
  • In this paper, a simple Ebers-Moll Model for the heterojunction bipolar transistor is presented. Using the model structure for the npn type HBT, the current-voltage characteristics was analyzed. And from the obtained terminal currents, the Ebers-Moll equations were derived. Then substituting the physical parameters for heterojunction to those for homojunction, this model would be used to analyze the characteristics of single and/or duble heterojunction HBT's. And directly relating model parameters to device parameters, it would be also used to optimize the characteristics of HBT's. The simulated results using this model were in good agreement with experimental data.

  • PDF

Fabrication and Physical Properties of Heterojunction Solar Cell (II-VI) of $n-Cd_{1-x}Zn_xS/p-Si$ (이종접합 태양전지 (II-VI)의 제작과 물성에 대한 연구($n-Cd_{1-x}Zn_xS/p-Si$ 태양전지를 중심으로))

  • Lee, Soo-Il;Kim, Byung-Chul;Seo, Dong-Joo;Choi, Seong-Hyu;Hong, Kwang-Joon;You, Sang-Ha
    • Solar Energy
    • /
    • v.8 no.1
    • /
    • pp.41-48
    • /
    • 1988
  • Heterojunction solar cells of $n-Cd_{1-x}Zn_xS/p-Si$ were fabricated by solution growth technique. The crystal structure, spectral response, surface morphology, and I-V characteristics of the $n-Cd_{1-x}Zn_xS/p-Si$ heterojunction solar cells were studied. The $Cd_{1-x}Zn_xS$ layer deposited on a silicon substrate (111) were found to be a cubic structure with the crystal orientation (111), (220) of the CdS and to be a hexagonal structure with crystal orientation (100) of the ZnS. The open-circuit voltage, short-circuit current, fill factor, and conversion efficiency of $n-Cd_{1-x}Zn_xS/p-Si$ heterojunction solar cell under $100mW/cm^2$ illumination were found to be 0.43V, 38mA. 0.76, and 12.4%, respectively.

  • PDF

Simulation Study on Heterojunction InGaP/InAlGaP Solar Cell (InGaP/InAlGaP 이종 접합구조 태양전지 시뮬레이션 연구)

  • Kim, Junghwan
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.3
    • /
    • pp.162-167
    • /
    • 2013
  • An epitaxial layer structure for heterojunction p-InGaP/N-InAlGaP solar cell has proposed. Simulation for current density-voltage characteristics has been performed on p-InGaP/N-InAlGaP structure and the simulation results were compared with p-InGaP/p-GaAs/N-InAlGaP structure and homogeneous InGaP pn junction structure. The simulation result showed that the maximum output power and fill factor have greatly increased by replacing n-InGaP with N-InAlGaP. The thicknesses of p-InGaP and n-InAlGaP were optimized for the epitaxial layer structure of p-InGaP/N-InAlGaP.

Quantum Mechanical Calculation of Two-Dimensional Electron Gas Density in AlGaAs/GaAs/AlGaAs Double-Heterojunction HEMT Structures (AlGaAs/GaAs/AlGaAs 이중 이종집합 HEMT 구조에서의 2차원 전자개스 농도의 양자역학적 계산)

  • 윤경식;이정일;강광남
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.3
    • /
    • pp.59-65
    • /
    • 1992
  • In this paper, the Numerov method is applied to solve the Schroedinger equation for $Al_{0.3}Ga_{0.7}AS/GaAs/Al_{0.3}Ga_{0.7}As$ double-heterojunction HEMT structures. The 3 subband energy levels, corresponding wave functions, 2-dimensional electron gas density, and conduction band edge profile are calculated from a self-consistent iterative solution of the Schroedinger equation and the Poisson equation. In addition, 2-dimensional electron gas densities in a quantum well of double heterostructure are calculated as a function of applied gate voltage. The density in the double heterojunction quantum well is increased to about more than 90%, however, the transconductance of the double heterostructure HEMT is not improved compared to that of the single heterostructure HEMT. Thus, double-heterojunction structures are expected to be suitable to increase the current capability in a HEMT device or a power HEMT structure.

  • PDF

Preparation and Photoelectrochemical Behavior of Cu2O/TiO2 Inverse Opal Heterojunction Arrays

  • Kim, Hyun-Sik;Lee, Sang-Kwon;Kang, Soon-Hyung
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.3
    • /
    • pp.149-153
    • /
    • 2012
  • The $Cu_2O/TiO_2$ inverse opal heterojunction arrays were developed by electrochemical deposition of $Cu_2O$ nanoparticles on $TiO_2$ inverse opal arrays. The $Cu_2O$ nanoparticles completely filled the inner pores of $TiO_2$ inverse opal film (prepared by liquid phase deposition with an average thickness of 400 nm) and covered the entire area; exhibiting high crystalline properties of anatase and cubic phase from $TiO_2$ and $Cu_2O$, respectively. From asymmetric current-voltage profile, it was noticeable that a heterojunction was well formed for charge transport from $Cu_2O$ to $TiO_2$ film resulting from the enhanced charge separation yield. In addition, increased photocurrent of 0.19 $mA/cm^2$ (versus 0.08 $mA/cm^2$ under dark condition) was obtained at -0.35 V from the heterojunction structure in the 0.5M $Na_2SO_4$ solution.

One-Dimensional Core/Shell Structured TiO2/ZnO Heterojunction for Improved Photoelectrochemical Performance

  • Ji, In-Ae;Park, Min-Joon;Jung, Jin-Young;Choi, Mi-Jin;Lee, Yong-Woo;Lee, Jung-Ho;Bang, Jin-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2200-2206
    • /
    • 2012
  • One-dimensional $TiO_2$ array grown on optically transparent electrode holds a promise as a photoelectrode for photoelectrochemical water splitting; however, its crystal structure is rutile, imposing constraints on the potent use of this nanostructure. To address this issue, a heterojunction with type-II band alignment was fabricated using atomic layer deposition (ALD) technique. One-dimensional core/shell structured $TiO_2$/ZnO heterojunction was superior to $TiO_2$ in the photoelectrochemical water splitting because of better charge separation and more favorable Fermi level. The heterojunction also possesses better light scattering property, which turned out to be beneficial even for improving the photoelectrochemical performance of semiconductor-sensitized solar cell.

Photovoltaic Effects of $SnO_2$-$Sb_xS_{1-x}$-Sn Structure ($SnO_2$-$Sb_xS_{1-x}$-Sn 구조에서의 광기전력 효과)

  • 박태영;김화택
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.16 no.4
    • /
    • pp.32-35
    • /
    • 1979
  • When photon was injected to SnO2- amorphous Sb S thin film -Sn structure through the window of SnO2, photo- voltaic effect was observed. With the energy change of photon, photovoltage had either positive or negative value This phenomenon was considered to be caused by formation of n-n heterojunction in SnO2 - Sb S structure and Schottky junction Sb S -Sn structure.

  • PDF

Research and Development Trend of Carrier Selective Energy Contact Solar Cells (전하선택형 태양전지의 연구개발 동향)

  • Cho, Eun-Chel;Cho, Young Hyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.6 no.2
    • /
    • pp.43-48
    • /
    • 2018
  • The traditional silicon heterojunction solar cells consist of intrinsic amorphous silicon to prevent recombination of the silicon surface and doped amorphous silicon to transport the photo-generated electrons and holes to the electrode. Back contact solar cells with silicon heterojunction exhibit very high open-circuit voltages, but the complexity of the process due to form the emitter and base at the backside must be addressed. In order to solve this problem, the structure, manufacturing method, and new materials enabling the carrier selective contact (CSC) solar cell capable of achieving high efficiency without using a complicated structure have recently been actively developed. CSC solar cells minimize carrier recombination on metal contacts and effectively transfer charge. The CSC structure allows very low levels of recombination current (eg, Jo < 9fA/cm2), thereby achieves high open-circuit voltage and high efficiency. This paper summarizes the core technology of CSC solar cell, which has been spotlighted as the next generation technology, and is aiming to speed up the research and development in this field.

Correlation Between Crystal Structure and Properties in Polymer Solar Cells (고분자 태양전지의 결정구조와 특성의 상관성)

  • Kim, Jung Yong
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.88-93
    • /
    • 2008
  • The bulk-heterojunction polymer solar cell based on regioregular P3HT (poly(3-hexylthiophene)) and PCBM (methanofullerene [6,6]-phenyl $C_{61}$-butyric acid methyl ester) was fabricated. Annealing effects on the crystal structure of polymer-fullerene blends as well as the UV-VIS electronic absorption spectroscopy were investigated. The correlation between the crystal organization of bulk-heterojunction film and the power conversion efficiency of solar cell was studied. Resultantly, the polymer solar cell annealed on $150^{\circ}C$ for 30 min, showed both the enhanced molecular interactions and the optimized crystal structure and displayed the power conversion efficiency of 3.2 %.