• Title/Summary/Keyword: Heterojunction structure

검색결과 131건 처리시간 0.024초

ZnTe-InSb Heterojunction의 전기적 특성 (Electrical Properties of ZnTe-lnSb Heterojunctions)

  • 김화택
    • 대한전자공학회논문지
    • /
    • 제12권4호
    • /
    • pp.35-40
    • /
    • 1975
  • ZnTe-lnSb Heterojunction을 계면합금법으로 제작했다. Insb의 In이 ZnTe결정에 확산되어 계면에 고저항 ZnTe충을 성장시켜 P-i-n구조를 갖고 있으며 전류수송기구는 p형 ZnTe 가전자대로부터 고저항 ZnTe충에 주입된 Hole의 SCLC기구에 의존된다. 순방향과 역방향 전압을 인가할때 실온에서 오런지색 전 장발장이 관측되었다. The Zn7e-lnSb heterojunctions was prepared by interface alloying technique. The structure of this beterojunction had p-i-n which semi-insulating ZnTe laver at interface of this heterojunction was formed by diffusing In of InSb into ZnTe crystal. The current transport mechanism of this heterojunction was Spacecharge-Limited-Current(SCLC) mechanism by hole at semi-insulating ZnTe layer. The hole wart injected from valence band of p- type SnTe crystal. Orange color electroluminescence was observed at this heterojunction when forward and reversed bias voltage applied.

  • PDF

이종접합 쌍극성 트랜지스터의 Ebers-Moll 모델 (An Ebers-Moll Model for Heterojunction Bipolar Transistor's)

  • 박광민;곽계달
    • 전자공학회논문지A
    • /
    • 제30A권3호
    • /
    • pp.88-94
    • /
    • 1993
  • In this paper, a simple Ebers-Moll Model for the heterojunction bipolar transistor is presented. Using the model structure for the npn type HBT, the current-voltage characteristics was analyzed. And from the obtained terminal currents, the Ebers-Moll equations were derived. Then substituting the physical parameters for heterojunction to those for homojunction, this model would be used to analyze the characteristics of single and/or duble heterojunction HBT's. And directly relating model parameters to device parameters, it would be also used to optimize the characteristics of HBT's. The simulated results using this model were in good agreement with experimental data.

  • PDF

이종접합 태양전지 (II-VI)의 제작과 물성에 대한 연구($n-Cd_{1-x}Zn_xS/p-Si$ 태양전지를 중심으로) (Fabrication and Physical Properties of Heterojunction Solar Cell (II-VI) of $n-Cd_{1-x}Zn_xS/p-Si$)

  • 이수일;김병철;서동주;최성휴;홍광준;유상하
    • 태양에너지
    • /
    • 제8권1호
    • /
    • pp.41-48
    • /
    • 1988
  • Heterojunction solar cells of $n-Cd_{1-x}Zn_xS/p-Si$ were fabricated by solution growth technique. The crystal structure, spectral response, surface morphology, and I-V characteristics of the $n-Cd_{1-x}Zn_xS/p-Si$ heterojunction solar cells were studied. The $Cd_{1-x}Zn_xS$ layer deposited on a silicon substrate (111) were found to be a cubic structure with the crystal orientation (111), (220) of the CdS and to be a hexagonal structure with crystal orientation (100) of the ZnS. The open-circuit voltage, short-circuit current, fill factor, and conversion efficiency of $n-Cd_{1-x}Zn_xS/p-Si$ heterojunction solar cell under $100mW/cm^2$ illumination were found to be 0.43V, 38mA. 0.76, and 12.4%, respectively.

  • PDF

InGaP/InAlGaP 이종 접합구조 태양전지 시뮬레이션 연구 (Simulation Study on Heterojunction InGaP/InAlGaP Solar Cell)

  • 김정환
    • 한국진공학회지
    • /
    • 제22권3호
    • /
    • pp.162-167
    • /
    • 2013
  • 이종 p-InGaP/N-InAlGaP 접합 화합물 반도체 태양전지의 에피 구조를 제안하였다. 제안된 이종접합구조와 p-InGaP/p-GaAs/N-InAlGaP와 동종 p-InGaP/n-InGaP 접합구조 태양전지의 전류-전압 특성곡선을 시뮬레이션하고 결과를 비교분석하였다. 이종 p-InGaP/N-InAlGaP 접합구조에서 가장 높은 최대출력과 곡선인자(fill factor)를 나타내는 시뮬레이션 결과를 얻었으며 이를 바탕으로 제안된 이종접합 에피구조를 최적화하였다.

AlGaAs/GaAs/AlGaAs 이중 이종집합 HEMT 구조에서의 2차원 전자개스 농도의 양자역학적 계산 (Quantum Mechanical Calculation of Two-Dimensional Electron Gas Density in AlGaAs/GaAs/AlGaAs Double-Heterojunction HEMT Structures)

  • 윤경식;이정일;강광남
    • 전자공학회논문지A
    • /
    • 제29A권3호
    • /
    • pp.59-65
    • /
    • 1992
  • In this paper, the Numerov method is applied to solve the Schroedinger equation for $Al_{0.3}Ga_{0.7}AS/GaAs/Al_{0.3}Ga_{0.7}As$ double-heterojunction HEMT structures. The 3 subband energy levels, corresponding wave functions, 2-dimensional electron gas density, and conduction band edge profile are calculated from a self-consistent iterative solution of the Schroedinger equation and the Poisson equation. In addition, 2-dimensional electron gas densities in a quantum well of double heterostructure are calculated as a function of applied gate voltage. The density in the double heterojunction quantum well is increased to about more than 90%, however, the transconductance of the double heterostructure HEMT is not improved compared to that of the single heterostructure HEMT. Thus, double-heterojunction structures are expected to be suitable to increase the current capability in a HEMT device or a power HEMT structure.

  • PDF

Preparation and Photoelectrochemical Behavior of Cu2O/TiO2 Inverse Opal Heterojunction Arrays

  • Kim, Hyun-Sik;Lee, Sang-Kwon;Kang, Soon-Hyung
    • 전기화학회지
    • /
    • 제15권3호
    • /
    • pp.149-153
    • /
    • 2012
  • The $Cu_2O/TiO_2$ inverse opal heterojunction arrays were developed by electrochemical deposition of $Cu_2O$ nanoparticles on $TiO_2$ inverse opal arrays. The $Cu_2O$ nanoparticles completely filled the inner pores of $TiO_2$ inverse opal film (prepared by liquid phase deposition with an average thickness of 400 nm) and covered the entire area; exhibiting high crystalline properties of anatase and cubic phase from $TiO_2$ and $Cu_2O$, respectively. From asymmetric current-voltage profile, it was noticeable that a heterojunction was well formed for charge transport from $Cu_2O$ to $TiO_2$ film resulting from the enhanced charge separation yield. In addition, increased photocurrent of 0.19 $mA/cm^2$ (versus 0.08 $mA/cm^2$ under dark condition) was obtained at -0.35 V from the heterojunction structure in the 0.5M $Na_2SO_4$ solution.

One-Dimensional Core/Shell Structured TiO2/ZnO Heterojunction for Improved Photoelectrochemical Performance

  • Ji, In-Ae;Park, Min-Joon;Jung, Jin-Young;Choi, Mi-Jin;Lee, Yong-Woo;Lee, Jung-Ho;Bang, Jin-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권7호
    • /
    • pp.2200-2206
    • /
    • 2012
  • One-dimensional $TiO_2$ array grown on optically transparent electrode holds a promise as a photoelectrode for photoelectrochemical water splitting; however, its crystal structure is rutile, imposing constraints on the potent use of this nanostructure. To address this issue, a heterojunction with type-II band alignment was fabricated using atomic layer deposition (ALD) technique. One-dimensional core/shell structured $TiO_2$/ZnO heterojunction was superior to $TiO_2$ in the photoelectrochemical water splitting because of better charge separation and more favorable Fermi level. The heterojunction also possesses better light scattering property, which turned out to be beneficial even for improving the photoelectrochemical performance of semiconductor-sensitized solar cell.

$SnO_2$-$Sb_xS_{1-x}$-Sn 구조에서의 광기전력 효과 (Photovoltaic Effects of $SnO_2$-$Sb_xS_{1-x}$-Sn Structure)

  • 박태영;김화택
    • 대한전자공학회논문지
    • /
    • 제16권4호
    • /
    • pp.32-35
    • /
    • 1979
  • SnO2- amorphous Sb 5 thin film-Sn structure에서 SnO2 창으로 photon을 입사시켰을 때 photo-voltaic 효과를 발견했으며 photon의 energy에 따라 photowltage의 부호가 반전 되었다. 이러한 현상은 SnO2- Sb S 사이에서 n-n heterojunction이, Sb S Sn사이에서 schottky junction이 형성되기 때문인 것으로 여겨진다.

  • PDF

전하선택형 태양전지의 연구개발 동향 (Research and Development Trend of Carrier Selective Energy Contact Solar Cells)

  • 조은철;조영현;이준신
    • Current Photovoltaic Research
    • /
    • 제6권2호
    • /
    • pp.43-48
    • /
    • 2018
  • The traditional silicon heterojunction solar cells consist of intrinsic amorphous silicon to prevent recombination of the silicon surface and doped amorphous silicon to transport the photo-generated electrons and holes to the electrode. Back contact solar cells with silicon heterojunction exhibit very high open-circuit voltages, but the complexity of the process due to form the emitter and base at the backside must be addressed. In order to solve this problem, the structure, manufacturing method, and new materials enabling the carrier selective contact (CSC) solar cell capable of achieving high efficiency without using a complicated structure have recently been actively developed. CSC solar cells minimize carrier recombination on metal contacts and effectively transfer charge. The CSC structure allows very low levels of recombination current (eg, Jo < 9fA/cm2), thereby achieves high open-circuit voltage and high efficiency. This paper summarizes the core technology of CSC solar cell, which has been spotlighted as the next generation technology, and is aiming to speed up the research and development in this field.

고분자 태양전지의 결정구조와 특성의 상관성 (Correlation Between Crystal Structure and Properties in Polymer Solar Cells)

  • 김정용
    • Korean Chemical Engineering Research
    • /
    • 제46권1호
    • /
    • pp.88-93
    • /
    • 2008
  • 지역규칙성 폴리3핵실티오펜과 용해성 플러렌 블렌드로 이루어진 벌크이종접합 고분자 태양전지를 제작하였다. 고분자 블렌드 필름에 대한 열처리 효과가 필름의 결정 구조와 자외선/가시광선 흡수스펙트럼에 주는 영향을 조사하였다. 그 후, 열처리에 의한 필름의 결정구조와 태양전지 효율의 상관관계를 연구하였다. 그 결과, $150^{\circ}C$에서 열처리한 필름이 분자간 상호작용 및 결정성측면에서 최적이었으며, 이 때, 고분자 태양전지의 에너지 전환 효율은 3.2 %이었다.