• Title/Summary/Keyword: Heterogeneous materials

Search Result 450, Processing Time 0.023 seconds

Development of Distributed Smart Data Monitoring System for Heterogeneous Manufacturing Machines Operation (이종 공작기계 운용 관리를 위한 분산 스마트 데이터 모니터링 시스템 개발)

  • Lee, Young-woon;Choi, Young-ju;Lee, Jong-Hyeok;Kim, Byung-Gyu;Lee, Seung-Woo;Park, Jong-Kweon
    • Journal of Digital Contents Society
    • /
    • v.18 no.6
    • /
    • pp.1175-1182
    • /
    • 2017
  • Recent trend in the manufacturing industry is focused on the convergence with IoT and Big Data, by emergence of the 4th Industrial Revolution. To realize a smart factory, the proposed system based on MTConnect technology collects and integrates various status information of machines from many production facilities including heterogeneous devices. Also it can distribute the acquisited status of heterogeneous manufacturing machines to the remote devices. As a key technology of a flexible automated production line, the proposed system can provide much possibility to manage important information such as error detection and processing state management in the unmanned automation line.

Optimum Carbonation Reforming Period of Recycled Aggregate Based on the Microscopic Carbonation Conduct (미시적 탄산화 거동에 기초한 순환 골재의 최적 탄산화 개질 기간)

  • Shin, Jin-Hak;Kim, Han-Sic;Ha, Jung-Soo;Chung, Lan
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.329-340
    • /
    • 2016
  • Increase in demotion and repair works on buildings in the construction market generates a large amount of construction waste. Recycling of construction waste is important for saving of resources, preservation of environment and constant advance of the construction industry. Accordingly, the environmental and economic value of recycled aggregate, which is produced after waste concrete is crushed, is increasingly highlighted. It is generally known that compared to concrete made of ordinary aggregate, concrete made of recycled aggregate has low quality, and the low quality is dependent on the amount of the bonding heterogeneous (cement paste and mortar) as well as the amount of the pores within the bonding heterogeneous. Reports on carbonation mechanism shows that the pores of cement-based materials are filled up by the progress of carbonation. Therefore, this study aims at an estimation of the period for optimum carbonation reforming appropriate for the thickness of the bonding heterogeneous of recycled aggregate, based on carbonation mechanism, with a view to improving the product quality by means of filling up the pores of the bonding heterogeneous of recycled aggregate. This study drew the carbonation depth according to the passage of age by calculating the bonding ratio and bonding thickness of the bonding heterogeneous as against the particle size distribution of recycled aggregate as well as by chemical quantitative analysis according to the age of accelerated carbonation of mock-up samples imitating bonding heterogeneous. Based on the correlation between the age of accelerated carbonation and carbonation depth, this study also proposed the estimated period of carbonation reforming of recycled aggregate appropriate for the thickness of the bonding heterogeneous.

Construction & Services of Regional Information Network for Changwon & Masan Industrial Complex (창원.마산 지역정보유통망 구축 연구)

  • Jo, Yu-Seop;Jeon, Hyeong-Deok
    • 연구논문집
    • /
    • s.26
    • /
    • pp.69-84
    • /
    • 1996
  • Regional INformation Network Center has constructed integrated VAN among the heterogeneous computers and core technical information database for machinery & materials-oriented enterprises in the Changwon & Masan Industrial complex. As the result of RINNet project, regional industrial companies can take advantage of getting core technical information for developing new technology and strengthening competitive power. Accordingly, RINNet(Regional INformation Network for science & technology) makes regional industrial companies possible to collect, acquire and use technical information rapidly and motivates regional society to form the rapid technical interchange system and cooperative system among industrial-educational-institutal complex.

  • PDF

ISOTOPIC-SPECTRAL DETERMINATION OF CARBON IN HIGH PURITY INORGANIC MATERIALS

  • Lee, V.N.;Nemets, V.M.
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.477-480
    • /
    • 1995
  • Isotopic-spectral method [I] was applicated for determination of carbon in silicate materials (pure silica, guartz glasses, geological probs etc.). Isotopic heterogeneous balancing of carbon in gaseous phase and solid samples was carried out at the temperature of $1500-1900^{\circ}K$. Spectroscopic measuring of isotope concentration in a balanced gas was made using the electron-vibrational band heads of CO molecules excited in HF discharge. Limits of detection of carbon concentrations appear to be $n^*10^{-6}$.

  • PDF

Effect of temperature and oxygen partial pressure on the growth and development of Cu2O nanorods by radio frequency magnetron sputtering

  • You, Jae-Lok;Jo, Kwang-Min;Kim, Se-Yoon;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.102-103
    • /
    • 2013
  • As an important p-type semiconductor metal oxide with a narrow band gap (1.2 - 2.6eV), copper oxide (Cu2O) has been studied because of its various applications as material for heterogeneous catalysts, gas sensors, optical switch, lithium-ion electrode materials, field emission devices, solar cells. The fundamental properties of oxide-semiconductor can be greatly affected by the surface morphology, size, geometry and spatial orientation.

  • PDF

Material distribution optimization of 2D heterogeneous cylinder under thermo-mechanical loading

  • Asgari, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.703-723
    • /
    • 2015
  • In this paper optimization of volume fraction distribution in a thick hollow cylinder with finite length made of two-dimensional functionally graded material (2D-FGM) and subjected to steady state thermal and mechanical loadings is considered. The finite element method with graded material properties within each element (graded finite elements) is used to model the structure. Volume fractions of constituent materials on a finite number of design points are taken as design variables and the volume fractions at any arbitrary point in the cylinder are obtained via cubic spline interpolation functions. The objective function selected as having the normalized effective stress equal to one at all points that leads to a uniform stress distribution in the structure. Genetic Algorithm jointed with interior penalty-function method for implementing constraints is effectively employed to find the global solution of the optimization problem. Obtained results indicates that by using the uniform distribution of normalized effective stress as objective function, considerably more efficient usage of materials can be achieved compared with the power law volume fraction distribution. Also considering uniform distribution of safety factor as design criteria instead of minimizing peak effective stress affects remarkably the optimum volume fractions.

Xenon-129 NMR Method for the Study of Heterogeneous Catalysts (크세논-129 핵자기 공명 분광법을 이용한 불균일계 촉매의 연구)

  • Ryoo, Ryong
    • Applied Chemistry for Engineering
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 1991
  • Xenon-129 NMR technique has been developed since 1980 as a new method for the characterization of microporous materials such as zeolites, activated carbons and alumina by using chemical shift and linewidth variations in $^{129}Xe$ NMR of adsorbed xenon gas. This NMR technique has been known to be very effective to probe the locational and the chemical changes of the supported metallic species as well as the physicochemical change of the support material. Recently, this method has been successfully applied for the characterization of amorphous materials such as activated carbons, silica and alumina. Basic principles, experimental techniques and recent applications of the $^{129}Xe$ NMR method for the study of heterogeneous catalysts are introduced in this paper.

  • PDF

Determination of Soil Sample Size Based on Gy's Particulate Sampling Theory (Gy의 입자성 물질 시료채취이론에 근거한 토양 시료 채취량 결정)

  • Bae, Bum-Han
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.1-9
    • /
    • 2011
  • A bibliographical review of Gy sampling theory for particulate materials was conducted to provide readers with useful means to reduce errors in soil contamination investigation. According to the Gy theory, the errors caused by the heterogeneous nature of soil include; the fundamental error (FE) caused by physical and chemical constitutional heterogeneity, the grouping and segregation error (GE) aroused from gravitational force, long-range heterogeneous fluctuation error ($CE_2$), the periodic heterogeneity fluctuation error ($CE_3$), and the materialization error (ME) generated during physical process of sample treatment. However, the accurate estimation of $CE_2$ and $CE_3$ cannot be estimated easily and only increasing sampling locations can reduce the magnitude of the errors. In addition, incremental sampling is the only method to reduce GE while grab sampling should be avoided as it introduces uncertainty and errors to the sampling process. Correct preparation and operation of sampling tools are important factors in reducing the incremental delimitation error (DE) and extraction error (EE) which are resulted from physical processes in the sampling. Therefore, Gy sampling theory can be used efficiently in planning a strategy for soil investigations of non-volatile and non-reactive samples.

Role of Charge Produced by the Gas Activation in the CVD Diamond Process

  • Hwang, Nong-Moon;Park, Hwang-Kyoon;Suk Joong L. Kang
    • The Korean Journal of Ceramics
    • /
    • v.3 no.1
    • /
    • pp.5-12
    • /
    • 1997
  • Charged carbon clusters which are formed by the gas activation are suggested to be responsible for the formation of the metastable diamond film. The number of carbon atoms in the cluster that can reverse the stability between diamond and graphite by the capillary effect increases sensitively with increasing the surface energy ratio of graphite to diamond. The gas activation process produces charges such as electrons and ions, which are energetically the strong heterogeneous nucleation sites for the supersaturated carbon vapor, leading to the formation of the charged clusters. Once the carbon clusters are charged, the surface energy of diamond can be reduced by the electrical double layer while that of graphite cannot because diamond is dielectric and graphite is conducting. The unusual phenomena observed in the chemical vapor deposition diamond process can be successfully approached by the charged cluster model. These phenomena include the diamond deposition with the simultaneous graphite etching, which is known as the thermodynamic paradox and the preferential formation of diamond on the convex edge, which is against the well-established concept of the heterogeneous nucleation.

  • PDF

Epoxidation of Styrene using Nanosized γ-Al2O3/NiO Heterogeneous Catalyst Derived from the P123 Surfactant

  • Son, Boyoung;Jung, Miewon
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.423-426
    • /
    • 2012
  • $Al_2O_3$/NiO powder was obtained through hydrolysis-condensation reactions and thermal treatments. An organic additive, triblock copolymer surfactant P123, was added to the starting materials to control the surface area and morphology. The synthesized powder was characterized by X-ray diffractometry (XRD), field-emission scanning electron microscopy (FE-SEM) and a Brunner-Emmett-Teller surface analysis (BET). The heterogeneous catalytic activity of this powder was applied to an epoxidation reaction of styrene and was monitored using a gas chromatograph with mass spectrophotometry (GC/MS).