• Title/Summary/Keyword: Heterogeneous damage

Search Result 51, Processing Time 0.03 seconds

A scheme on multi-tier heterogeneous networks for citywide damage monitoring in an earthquake

  • Fujiwara, Takahiro;Watanabe, Takashi;Shinozuka, Masanobu
    • Smart Structures and Systems
    • /
    • v.11 no.5
    • /
    • pp.497-510
    • /
    • 2013
  • Quick, accurate damage monitoring is strongly required for damage assessment in the aftermath of a large natural disaster. Wireless sensor networks are promising technologies to acquire damage information in a citywide area. The wireless sensor networks, however, would be faced with difficulty to collect data in real-time and to expand the scalability of the networks. This paper discusses a scheme of network architecture to cove a whole city in multi-tier heterogeneous networks, which consist of wireless sensor networks, access networks and a backbone network. We first review previous studies for citywide damage monitoring, and then discuss the feature of multi-tier heterogeneous networks to cover a citywide area.

Development of Heterogeneous Damage Cause Estimation Technology for Bridge Decks using Random Forest (랜덤포레스트를 활용한 교량 바닥판의 이종손상 원인 추정 기술 개발)

  • Jung, Hyun-Jin;Park, Ki Tae;Kim, Jae Hwan;Kwon, Tae Ho;Lee, Jong-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.19-32
    • /
    • 2024
  • An investigation into the detailed safety diagnosis report indicates that domestic highway bridges mainly suffer from defects, deterioration, and damage due to physical forces. In particular, deterioration is an inevitable damage that occurs due to various environmental and external factors over time. In particular, bridge deck is very vulnerable to cracks, which occur along with various types of damages such as rebar corrosion and surface delamination. Thus, this study evaluates a correlation between heterogeneous damage and deterioration environment and then identifies the main causes of such heterogeneous damage. After all, a bridge heterogeneous damage prediction model was developed using random forests to determine the top five factors contributing to the occurrence of the heterogeneous damage. The results of the study would serve as a basic data for estimating bridge maintenance and budget.

Determination of representative volume element in concrete under tensile deformation

  • Skarzyski, L.;Tejchman, J.
    • Computers and Concrete
    • /
    • v.9 no.1
    • /
    • pp.35-50
    • /
    • 2012
  • The 2D representative volume element (RVE) for softening quasi-brittle materials like concrete is determined. Two alternative methods are presented to determine a size of RVE in concrete subjected to uniaxial tension by taking into account strain localization. Concrete is described as a heterogeneous three-phase material composed of aggregate, cement matrix and bond. The plane strain FE calculations of strain localization at meso-scale are carried out with an isotropic damage model with non-local softening.

Damage-Spread Analysis of Heterogeneous Damage with Crack Degradation Model of Deck in RC Slab Bridges (RC 슬래브교의 바닥판 균열 열화모델에 따른 이종손상 확산 분석)

  • Jung, Hyun-Jin;An, Hyo-Joon;Kim, Jae-Hwan;Part, Ki-Tae;Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.93-101
    • /
    • 2022
  • RC Slab bridges in Korea account for more than 70% of the total bridges for more than 20 years of service. As the number of aging structures increases, the importance of safety diagnosis and maintenance of structures increases. For highway bridges, cracks are a main cause of deck deterioration, which is very closely related to the decrease in bridge durability and service life. In addition, the damage rate of expansion joints and bearings accounts for approximately 73% higher than that of major members. Therefore, this study defined damage scenarios combined with devices damages and deck deterioration. The stress distribution and maximum stress on the deck were then evaluated using design vehicle load and daily temperature gradient for single and combined damage scenarios. Furthermore, this study performed damage-spread analysis and predicted condition ratings according to a deck deterioration model generated from the inspection and diagnosis history data of cracks. The heterogeneous damages combined with the member damages of expansion joints and bearings increased the rate of crack area and damage spread, which accelerated the time to reach the condition rating of C. Therefore, damage to bridge members requires proper and prompt repair and replacement, and otherwise it can cause the damage to bridge deck and the spread of the damage.

A comprehensive description for damage of concrete subjected to complex loading

  • Meyer, Christian;Peng, Xianghe
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.679-689
    • /
    • 1997
  • The damage of concrete subjected to multiaxial complex loading involves strong anisotropy due to its highly heterogeneous nature and the geometrically anisotropic characteristic of the microcracks. A comprehensive description of concrete damage is proposed by introducing a fourth-order anisotropic damage tenser. The evolution of damage is assumed to be related to the principal components of the current states of stress and damage. The unilateral effect of damage due to the closure and opening of microcracks is taken into account by introducing projection tensors that are also determined by the current state of stress. The proposed damage model considers the different kinds of damage mechanisms that result in different failure modes and different patterns of microdefects that cause different unilateral effects. This damage model is embedded in a thermomechanically consistent constitutive equation in which hardening and the triaxial compression caused shear-enhanced compaction can also be taken into account. The validity of the proposed model is verified by comparing theoretical and experimental results of plain and steel fiber reinforced concrete subjected to complex triaxial stress histories.

Prediction of Crack Distribution for the Deck and Girder of Single-Span and Multi-Span PSC-I Bridges (단경간 및 다경간 PSC-I 교량의 바닥판 및 거더의 균열분포 예측)

  • Hyun-Jin Jung;Hyojoon An;Jaehwan Kim;Kitae Park;Jong-Han Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.102-110
    • /
    • 2023
  • PSC-I girder bridges constitute the largest proportion among highway bridges in Korea. According to the precision safety diagnosis data for the past 10 years, approximately 41.3% of the PSC-I bridges have been graded as C. Furthermore, with the increase in the aging of bridges, preemptive management is becoming more important. Damage and deterioration to the deck and girder with a long replacement cylce can have considerable impacts on the service and deterioration of a bridge. In addition, the high rate of device damages, including expansion joints and bearings, necessitates an investigation into the influence of the device damage in the structural members of the bridge. Therefore, this study defined representative PSC-I girder bridges with single and multiple spans to evaluate heterogeneous damages that incorporate the damage of the bridge member and device with the deterioration of the deck. The heterogeneous damages increased a crack area ratio compared to the individual single damage. For the single-span bridge, the occurrence of bearing damage leads to the spread of crack distribution in the girder, and in the case of multi-span bridges, expansion joint damage leads to the spread of crack distribution in the deck. The research underscores that bridge devices, when damaged, can cause subsequent secondary damage due to improper repair and replacement, which emphasizes the need for continuous observation and responsive action to the damages of the main devices.

Damage Mechanism of Asphalt Concrete under Low Temperatures

  • Kim, Kwang-Woo;Yeon, Kyu-Seok;Park, Je-Seon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.200-204
    • /
    • 1994
  • Low temperature associated damage mechanism is not well known for asphalt concrete. Many studies have related the thermal cracking of pavement in the roadway in cold region with overall shrinkage of the pavement surface under assumption of homogeneous material. This study, however, was intiated based on the assumption that thermal incompatibility of materials (heterogeneous) in asphalt concrete mixture would be the primary cause of the damages. Acoustic emission technique and microscopic obsevation were employed to evaluate damage mechanism of asphalt concrete due to low temperature. The first method showed the sufficient evidence that asphalt concrete could be damaged by lowered temperature only. The second method showed that the damage by temperature resulted in micro-cracks at the interface between asphalt matrix and aggregate particle. It was concluded that these damage mechanisms were the primary cause of major thermal cracking of asphalt pavement in cold region.

  • PDF

Instability of (Heterogeneous) Euler beam: Deterministic vs. stochastic reduced model approach

  • Ibrahimbegovic, Adnan;Mejia-Nava, Rosa Adela;Hajdo, Emina;Limnios, Nikolaos
    • Coupled systems mechanics
    • /
    • v.11 no.2
    • /
    • pp.167-198
    • /
    • 2022
  • In this paper we deal with classical instability problems of heterogeneous Euler beam under conservative loading. It is chosen as the model problem to systematically present several possible solution methods from simplest deterministic to more complex stochastic approach, both of which that can handle more complex engineering problems. We first present classical analytic solution along with rigorous definition of the classical Euler buckling problem starting from homogeneous beam with either simplified linearized theory or the most general geometrically exact beam theory. We then present the numerical solution to this problem by using reduced model constructed by discrete approximation based upon the weak form of the instability problem featuring von Karman (virtual) strain combined with the finite element method. We explain how such numerical approach can easily be adapted to solving instability problems much more complex than classical Euler's beam and in particular for heterogeneous beam, where analytic solution is not readily available. We finally present the stochastic approach making use of the Duffing oscillator, as the corresponding reduced model for heterogeneous Euler's beam within the dynamics framework. We show that such an approach allows computing probability density function quantifying all possible solutions to this instability problem. We conclude that increased computational cost of the stochastic framework is more than compensated by its ability to take into account beam material heterogeneities described in terms of fast oscillating stochastic process, which is typical of time evolution of internal variables describing plasticity and damage.

Multi-type sensor placement design for damage detection

  • Li, Y.Q.;Zhou, M.S.;Xiang, Z.H.;Cen, Z.Z.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.3
    • /
    • pp.357-368
    • /
    • 2008
  • The result of damage detection from on-site measurements is commonly polluted by unavoidable measurement noises. It is widely recognized that this side influence could be reduced to some extent if the sensor placement was properly designed. Although many methods have been proposed to find the optimal number and location of mono-type sensors, the optimal layout of multi-type sensors need further investigation, because a network of heterogeneous sensors is commonly used in engineering. In this paper, a new criterion of the optimal placement for different types of sensors is proposed. A corresponding heuristic is developed to search for good results. In addition, Monte Carlo simulation is suggested to design a robust damage detection system which contains certain redundancies. The validity of these methods is illustrated by two bridge examples.

Analysis of the shear failure process of masonry by means of a meso-scopic mechanical modeling approach

  • Wang, Shuhong;Tang, Chun'an;Jia, Peng
    • Structural Engineering and Mechanics
    • /
    • v.24 no.2
    • /
    • pp.181-194
    • /
    • 2006
  • The masonry is a complex heterogeneous material and its shear deformation and fracture is associated with very complicated progressive failures in masonry structure, and is investigated in this paper using a mesoscopic mechanical modelling, Considering the heterogeneity of masonry material, based on the damage mechanics and elastic-brittle theory, the newly developed Material Failure Process Analysis (MFPA) system was brought out to simulate the cracking process of masonry, which was considered as a three-phase composite of the block phase, the mortar phase and the block-mortar interfaces. The crack propagation processes simulated with this model shows good agreement with those of experimental observations by other researchers. This finding indicates that the shear fracture of masonry observed at the macroscopic level is predominantly caused by tensile damage at the mesoscopic level. Some brittle materials are so weak in tension relative to shear that tensile rather than shear fractures are generated in pure shear loading.