• Title/Summary/Keyword: Heterogeneous basic catalyst

Search Result 10, Processing Time 0.028 seconds

Immobilization of L-Lysine on Zeolite 4A as an Organic-Inorganic Composite Basic Catalyst for Synthesis of α,β-Unsaturated Carbonyl Compounds under Mild Conditions

  • Zamani, Farzad;Rezapour, Mehdi;Kianpour, Sahar
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2367-2374
    • /
    • 2013
  • Lysine (Lys) immobilized on zeolite 4A was prepared by a simple adsorption method. The physical and chemical properties of Lys/zeolite 4A were investigated by X-ray diffraction (XRD), FT-IR, Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-vis. The obtained organic-inorganic composite was effectively employed as a heterogeneous basic catalyst for synthesis of ${\alpha},{\beta}$-unsaturated carbonyl compounds. No by-product formation, high yields, short reaction times, mild reaction conditions, operational simplicity with reusability of the catalyst are the salient features of the present catalyst.

Ligand Effect in Recycled CNT-Pd Heterogeneous Catalyst for Decarboxylative Coupling Reactions

  • Kim, Ji Dang;Pyo, Ayoung;Park, Kyungho;Kim, Gwui Cheol;Lee, Sunwoo;Choi, Hyun Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2099-2104
    • /
    • 2013
  • We present here an efficient and simple method for preparation of highly active Pd heterogeneous catalyst (CNT-Pd), specifically by reaction of dichlorobis(triphenylphosphine)palladium ($Pd(PPh_3)_2Cl_2$) with thiolated carbon nanotubes (CNTs). The as-prepared CNT-Pd catalysts demonstrated an excellent catalytic activity for the carbon-carbon (C-C) cross-coupling reactions (i.e. Suzuki, Stille, and decarboxylative coupling reactions) under mild conditions. The CNT-Pd catalyst could easily be removed from the reaction mixture; additionally, in the decarboxylative coupling of iodobenzene and phenylpropiolic acid, it showed a six-times recyclability, with no loss of activity. Moreover, once its activity had decreased by repeated recycling, it could easily be reactivated by the addition of phosphine ligands. The remarkable recyclability of the decarboxylative coupling reaction is attributable to the high degree of dispersion of Pd catalysts in CNTs. Aggregation of the Pd catalysts is inhibited by their strong adhesion to the thiolated CNTs during the chemical reactions, thereby permitting their recycling.

Synthesis, Characterization and Application of Poly(4-Methyl Vinylpyridinium Hydroxide)/SBA-15 Composite as a Highly Active Heterogeneous Basic Catalyst for the Knoevenagel Reaction

  • Kalbasi, Roozbeh Javad;Kolahdoozan, Majid;Massah, Ahmadreza;Shahabian, Keinaz
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2618-2626
    • /
    • 2010
  • In this paper poly (4-methyl vinylpyridinium hydroxide)/SBA-15 composite was prepared as a highly efficient heterogeneous basic catalyst by in situ polymerization method for the first time. It was characterized by XRD, FT-IR, BET, TGA, SEM and back titration using NaOH. This catalyst exhibited the excellent catalytic activities for the Knoevenagel condensation of various aldehydes with ethyl cyanoacetate. Over this catalyst, ${\alpha},{\beta}$-unsaturated carbonyl compounds were obtained in the reasonable yield at $95^{\circ}C$ in 10 - 30 min in $H_2O$ as a solvent with a 100% selectivity to the condensation products. Catalyst could be easily recycled after the reaction and it could be reused without the significant loss of activity/selectivity performance. No by-product formation, high yields, short reaction times, mild reaction conditions and operational simplicity with reusability of the catalyst were the salient features of the present synthetic protocol. Presence of $H_2O$ as a solvent was also recognized as a "green method".

Aqueous Suspension of Basic Alumina: An Efficient Catalytic System for the Synthesis of Poly Functionalized Pyridines

  • Shinde, Pravin V.;Shingate, Bapurao B.;Shingare, Murlidhar S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.459-462
    • /
    • 2011
  • In the present work, catalytic activity of basic alumina in water has been demonstrated for the synthesis of poly functionalized pyridines. This strategy has some remarkable advantages, such as use of heterogeneous catalyst in aqueous media, reusability of catalyst and scalable approach.

Epoxidation of Styrene using Nanosized γ-Al2O3/NiO Heterogeneous Catalyst Derived from the P123 Surfactant

  • Son, Boyoung;Jung, Miewon
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.423-426
    • /
    • 2012
  • $Al_2O_3$/NiO powder was obtained through hydrolysis-condensation reactions and thermal treatments. An organic additive, triblock copolymer surfactant P123, was added to the starting materials to control the surface area and morphology. The synthesized powder was characterized by X-ray diffractometry (XRD), field-emission scanning electron microscopy (FE-SEM) and a Brunner-Emmett-Teller surface analysis (BET). The heterogeneous catalytic activity of this powder was applied to an epoxidation reaction of styrene and was monitored using a gas chromatograph with mass spectrophotometry (GC/MS).

P123-Templated Co3O4/Al2O3 Mesoporous Mixed Oxides for Epoxidation of Styrene

  • Jung, Mie-Won;Kim, Young-Sil
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.316-320
    • /
    • 2012
  • $Co_3O_4$, $Al_2O_3$ and $Co_3O_4$/$Al_2O_3$ mesoporous powders were prepared by a sol-gel method with starting matierals of aluminum isopropoxide and cobalt (II) nitrate. A P123 template is employed as an active organic additive for improving the specific surface area of the mixed oxide by forming surfactant micelles. A transition metal cobalt oxide supported on alumina with and without P123 was tested to find the most active and selective conditions as a heterogeneous catalyst in the reaction of styrene epoxidation. A bBlock copolymer-P123 template was added to the staring materials to control physical and chemical properties. The properties of $Co_3O_4$/$Al_2O_3$ powder with and without P123 were characterized using an X-ray diffractometer (XRD), a Field-Emission Scanning Electron Microscope (FE-SEM), a Bruner-Emmertt-Teller (BET) surface analyzer, and $^{27}Al$ MAS NMR spectroscopy. Powders with and without P123 were compared in catalytic tests. The catalytic activity and selectivity were monitored by GC/MS, $^1H$, and $^{13}C$-NMR spectroscopy. The performance for the reaction of epoxidation of styrene was observed to be in the following order: [$Co_3O_4$/$Al_2O_3$ with P123-1173 K > $Co_3O_4$/$Al_2O_3$ with P123-973 K > $Co_3O_4$-973 K>$Co_3O_4$/$Al_2O_3$-973 K > $Co_3O_4$/$Al_2O_3$ with P123-1473 K > $Al_2O_3$-973 K]. The existence of ${\gamma}$-alumina and the nature of the surface morphology are related to catalytic activity.

Synthesis of Optically Active Monoesters via Kinetic Resolution by Chiral Co (Salen) Complex Immobilized on Mesoporous BEA (메조세공 BEA에 고정화된 키랄 Co살렌 착체의 동적분할을 통한 고광학순도의 키랄 모노에스테르 합성)

  • Choi, Seong Dae;Park, Geun Woo;Lee, Gyung Chan;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.132-137
    • /
    • 2015
  • BEA-zeolite was modified by alkaline solution to introduce mesoporosity in the crystals and the homogeneous chiral Co(III) salen was immobilized in the mesopores. The dinuclear chiral Co(salen)-$GaCl_3$ catalyst immobilized on mesoporous BEA-zeolite showed high activity for the regioselective ring opening of terminal epoxides by carboxylic acids. Various chiral monoester derivatives could be synthesized with moderate enantioselectivity (47~69 ee%) from racemic epoxides through above reaction. When the chiral (S)-ECH was used as a reactant, it was efficiently resolved by carboxylic acid with a high enantioselectivity in the presence of heterogenized chiral salen catalyst, and the ring opened product afforded optically pure monoester epoxide (R)-GB (up to 98 ee%) through the ring closing in the basic solution by elimination of HCl. The heterogeneous catalyst could be fabricated easily, and the catalytic activity was retained for several times reuse without any further regeneration step.

Study on Preparation of Methyl N-Phenyl Carbamate by Oxidative Carbonylation of Aniline and Methanol (아닐린과 메탄올의 산화 카르보닐화에 의한 Methyl N-phenyl carbamate 제조 연구)

  • Roh, Jong-Seon;Lee, Kwan-Young;Kim, Tae-Soon;Chang, Tae-Seon;Yoon, Byung-Tae;Kim, Seong-Bo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.119-124
    • /
    • 2018
  • The production of methyl N-phenyl carbamate by an oxidative carbonylation method of aniline and methanol is of great interest as an environmentally friendly process that can replace the monomer production process of a polymer produce using conventional phosgene. In this study, heterogeneous catalysts were prepared by using Y-zeolite, $SiO_2$, $Al_2O_3$ as support, and oxidative carbonylation continuous operation from aniline and methanol was attempted using the prepared heterogeneous catalyst. Batch reactor was used to determine the support, and various reaction conditions such as reaction temperature, reaction pressure, and effect of promoter were established using palladium catalyst. A reaction kinetics study was conducted under optimum reaction conditions. The basic data for carbamate process development were obtained by performing continuous operation for a long time under established reaction condition.

Ru-based Activated Carbon-MgO Mixed Catalyst for Depolymerization of Alginic Acid (루테늄 담지 활성탄-마그네시아 혼합 촉매 상에서 알긴산의 저분자화 연구)

  • Yang, Seungdo;Kim, Hyungjoo;Park, Jae Hyun;Kim, Do Heui
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.232-237
    • /
    • 2022
  • Biorefineries, in which renewable resources are utilized, are an eco-friendly alternative based on biomass feedstocks. Alginic acid, a major component of brown algae, which is a type of marine biomass, is widely used in various industries and can be converted into value-added chemicals such as sugars, sugar alcohols, furans, and organic acids via catalytic hydrothermal decomposition under certain conditions. In this study, ruthenium-supported activated carbon and magnesium oxide were mixed and applied to the depolymerization of alginic acid in a batch reactor. The addition of magnesium oxide as a basic promoter had a strong influence on product distribution. In this heterogeneous catalytic system, the separation and purification processes are also simplified. After the reaction, low molecular weight alcohols and organic acids with 5 or fewer carbons were produced. Specifically, under the optimal reaction conditions of 30 mL of 1 wt% alginic acid aqueous solution, 100 mg of ruthenium-supported activated carbon, 100 mg of magnesium oxide, 210 ℃ of reaction temperature, and 1 h of reaction time, total carbon yields of 29.8% for alcohols and 43.8% for a liquid product were obtained. Hence, it is suggested that this catalytic system results in the enhanced hydrogenolysis of alginic acid to value-added chemicals.