• 제목/요약/키워드: Heterogeneous Microstructure

검색결과 52건 처리시간 0.02초

A STUDY ON THE RESPONSES OF OSTEOBLASTS TO VARIOUS SURFACE-TREATED TITANIUM

  • Lee Joung-Min;Kim Yung-Soo;Kim Chang-Whe;Jang Kyung-Soo;Lim Young-Jun
    • 대한치과보철학회지
    • /
    • 제42권3호
    • /
    • pp.307-326
    • /
    • 2004
  • Statement of problem. The long-term success of implants is the development of a stable direct connection between bone and implant surface, which must be structural and functional. To improve a direct implant fixation to the bone, various strategies have been developed focusing on the surface of materials. Among them, altering the surface properties can modify cellular responses such as cell adhesion, cell motility and bone deposition. Purpose. This study was to evaluate the cellular behaviors on the surface-modified titanium by morphological observation, cellular proliferation and differentiation. Material and methods. Specimens were divided into five groups, depending on their surface treatment: electropolishing(EP) anoclizing(AN), machining(MA), blasting with hydroxyapatite particle(RBM) and electrical discharge machining(EDM). Physicochemical properties and microstructures of the specimens were examined and the responses of osteoblast-like cells were investigated. The microtopography of specimens was observed by scanning electron microscopy(SEM). Surface roughness was measured by a three-dimensional roughness measuring system. The microstructure was analyzed by X-ray diffractometer(XRD) and scanning auger electron microscopy(AES). To evaluate cellular responses to modified titanium surfaces, osteoblasts isolated from neonatal rat were cultured. The cellular morphology and total protein amounts of osteoblast-like cell were taken as the marker for cellular proliferation, while the expression of alkaline phosphatase was used as the early differentiation marker for osteoblast. In addition, the type I collagen production was determined to be a reliable indicator of bone matrix synthesis. Results. 1. Each prepared specimen showed specific microtopography at SEM examination. The RBM group had a rough and irregular pattern with reticulated appearance. The EDM-treated surface had evident cracks and was heterogeneous consisting of broad sheet or plate with smooth edges and clusters of small grains, deep pores or craters. 2. Surface roughness values were, from the lowest to the highest, electropolished group, anodized group, machined group, RBM group and EDM group. 3. All groups showed amorphous structures. Especially anodized group was found to have increased surface oxide thickness and EDM group had titaniumcarbide(TiC) structure. 4. Cells on electropolished, anodized and machined surfaces developed flattened cell shape and cells on RBM appeared spherical and EDM showed both. After 14 days, the cells cultured from all groups were formed to be confluent and exhibited multilayer proliferation, often overlapped or stratified. 5. Total protein amounts were formed to be quite similar among all the group at 48 hours. At 14 days, the electropolished group and the anodized group induced more total protein amount than the RBM group(P<.05). 6. There was no significant difference among five groups for alkaline phosphatase(ALP) activity at 48 hours. The AN group showed significantly higher ALP activity than any other groups at 14 days(P<.05). 7. All the groups showed similar collagen synthesis except the EDM group. The amount of collagen on the electropolished and anodized surfaces were higher than that on the EDM surface(P<.05).

뉴잉글랜드 펠암돔 주변부 데본기 변성 이질암의 변성 온도-압력 경로 (Metamorphic P-T Paths from Devonian Pelitic Schists from the Pelham Dome, Massachusetts, USA)

  • 김형수
    • 암석학회지
    • /
    • 제9권4호
    • /
    • pp.211-237
    • /
    • 2000
  • 북중부 Massachusetts 주에 위치하는 펠암돔의 북동부 연변부에서 산출되는 십자석대와 남정석대에서 채취한 시료내의 주구성 광물과 석류석 반상변정에 대해 주성분 분석과 화학적 누대구조를 분석하였다. 석류석 반상변정들은 결정 내의 내부 엽리 형태의 변화와 누대구조를 통해 이들은 다변형/변성 팍용을 거쳐서 성장했음을 지시한다. $X_{Mn}$ 의 역전 누대구조와 경사의 변화, Fe/(Fe+Mg) 비의증감 그리고 계단상의 $X_{Ca}$ 을 보이는 석류석의 비정상적인 누대구조들은 석류석 반상변정 내의 내부엽리 구조의 변화와 일치하는 경향성을 보인다. 이 내부 엽리의 형태와 광물의 산출상태, 그리고 사장석, 흑운모, 십자석 그리고 백운모의 화학성분은 석류석의 누대구조가 다음들의 조합에 의해 변화되었음을 지시한다. (i) 석류석의 소모 (석류석+녹니석+백운모 = 십자석+흑운모+석영+$H_2$O)와 생성 (십자석+백운모+석영=석류석+흑운모$+Al_2$$SiO_{5}$ $+H_2$O)와 포함하는 일변수와 이변수 반응들. (ii) 엽리 발동안 이온성 용해작용, 선택적인 확산작용과 원소의 재분포를 유포하는 변형작용. (iii) 석류석 성장 동안에 온도-압력의 변화. 암석학적 관찰과 석류석의 내부엽리 구조의 변화와 결합된 연구지역의 온도-압력 경로는 두가지로 구분된다: (1) NW-SE 압축운동 동안의 온도/압력 증가; (2) NNW-SSE 압축운동 동안의 온도/압력 감소. 기존의 펠암돔과 Bronson Hill 지역에서 모나자이트, 티타나이트, 각섬석, 흑운모, 백운모 그리고 K-장석들의 온도-시간적 (thermochronological) 자료와 후기 고생대 구조 모델에 근거해서, 아발론 암층과 표층암 경계를 따라 집중된 비균질 전단운동의 결과로 형성된 알레게니안 변성작용은 펠암돔 중부 Shutesbury 지역에서 펜실베니아기 동안(290-300Ma) 남정석-십자석-백운모 광물조합을 형성시켰다.

  • PDF