• Title/Summary/Keyword: Heterogeneous Cellular Network

Search Result 56, Processing Time 0.032 seconds

Traffic-Aware Relay Sleep Control for Joint Macro-Relay Network Energy Efficiency

  • Deng, Na;Zhao, Ming;Zhu, Jinkang;Zhou, Wuyang
    • Journal of Communications and Networks
    • /
    • v.17 no.1
    • /
    • pp.47-57
    • /
    • 2015
  • With the ever growing demand of data applications, the joint macro-relay networks are emerging as a promising heterogeneous deployment to provide coverage extension and throughput enhancement. However, the current cellular networks are usually designed to be performance-oriented without enough considerations on the traffic variation, causing substantial energy waste. In this paper, we consider a joint macro-relay network with densely deployed relay stations (RSs), where the traffic load varies in both time and spatial domains. An energy-efficient scheme is proposed to dynamically adjust the RS working modes (active or sleeping) according to the traffic variations, which is called traffic-aware relay sleep control (TRSC). To evaluate the performance of TRSC,we establish an analytical model using stochastic geometry theory and derive explicit expressions of coverage probability, mean achievable rate and network energy efficiency (NEE). Simulation results demonstrate that the derived analytic results are reasonable and the proposed TRSC can significantly improve the NEE when the network traffic varies dynamically.

Radio Resource Management of CoMP System in HetNet under Power and Backhaul Constraints

  • Yu, Jia;Wu, Shaohua;Lin, Xiaodong;Zhang, Qinyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.3876-3895
    • /
    • 2014
  • Recently, Heterogeneous Network (HetNet) with Coordinated Multi-Point (CoMP) scheme is introduced into Long Term Evolution-Advanced (LTE-A) systems to improve digital services for User Equipments (UEs), especially for cell-edge UEs. However, Radio Resource Management (RRM), including Resource Block (RB) scheduling and Power Allocation (PA), in this scenario becomes challenging, due to the intercell cooperation. In this paper, we investigate the RRM problem for downlink transmission of HetNet system with Joint Processing (JP) CoMP (both joint transmission and dynamic cell selection schemes), aiming at maximizing weighted sum data rate under the constraints of both transmission power and backhaul capacity. First, joint RB scheduling and PA problem is formulated as a constrained Mixed Integer Programming (MIP) which is NP-hard. To simplify the formulation problem, we decompose it into two problems of RB scheduling and PA. For RB scheduling, we propose an algorithm with less computational complexity to achieve a suboptimal solution. Then, according to the obtained scheduling results, we present an iterative Karush-Kuhn-Tucker (KKT) method to solve the PA problem. Extensive simulations are conducted to verify the effectiveness and efficiency of the proposed algorithms. Two kinds of JP CoMP schemes are compared with a non-CoMP greedy scheme (max capacity scheme). Simulation results prove that the CoMP schemes with the proposed RRM algorithms dramatically enhance data rate of cell-edge UEs, thereby improving UEs' fairness of data rate. Also, it is shown that the proposed PA algorithms can decrease power consumption of transmission antennas without loss of transmission performance.

MARS: Multiple Access Radio Scheduling for a Multi-homed Mobile Device in Soft-RAN

  • Sun, Guolin;Eng, Kongmaing;Yin, Seng;Liu, Guisong;Min, Geyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.79-95
    • /
    • 2016
  • In order to improve the Quality-of-Service (QoS) of latency sensitive applications in next-generation cellular networks, multi-path is adopted to transmit packet stream in real-time to achieve high-quality video transmission in heterogeneous wireless networks. However, multi-path also introduces two important challenges: out-of-order issue and reordering delay. In this paper, we propose a new architecture based on Software Defined Network (SDN) for flow aggregation and flow splitting, and then design a Multiple Access Radio Scheduling (MARS) scheme based on relative Round-Trip Time (RTT) measurement. The QoS metrics including end-to-end delay, throughput and the packet out-of-order problem at the receiver have been investigated using the extensive simulation experiments. The performance results show that this SDN architecture coupled with the proposed MARS scheme can reduce the end-to-end delay and the reordering delay time caused by packet out-of-order as well as achieve a better throughput than the existing SMOS and Round-Robin algorithms.

Interference Management Algorithm Based on Coalitional Game for Energy-Harvesting Small Cells

  • Chen, Jiamin;Zhu, Qi;Zhao, Su
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4220-4241
    • /
    • 2017
  • For the downlink energy-harvesting small cell network, this paper proposes an interference management algorithm based on distributed coalitional game. The cooperative interference management problem of the energy-harvesting small cells is modeled as a coalitional game with transfer utility. Based on the energy harvesting strategy of the small cells, the time sharing mode of the small cells in the same coalition is determined, and an optimization model is constructed to maximize the total system rate of the energy-harvesting small cells. Using the distributed algorithm for coalition formation proposed in this paper, the stable coalition structure, optimal time sharing strategy and optimal power distribution are found to maximize the total utility of the small cell system. The performance of the proposed algorithm is discussed and analyzed finally, and it is proved that this algorithm can converge to a stable coalition structure with reasonable complexity. The simulations show that the total system rate of the proposed algorithm is superior to that of the non-cooperative algorithm in the case of dense deployment of small cells, and the proposed algorithm can converge quickly.

Dynamic Channel Management Scheme for Device-to-device Communication in Next Generation Downlink Cellular Networks (차세대 하향링크 셀룰러 네트워크에서 단말 간 직접 통신을 위한 유동적 채널관리 방법)

  • Se-Jin Kim
    • Journal of Internet Computing and Services
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Recently, the technology of device-to-device(D2D) communication has been receiving big attention to improve the system performance since the amount of high quality/large capacity data traffic from smart phones and various devices of Internet of Things increase rapidly in 5G/6G based next generation cellular networks. However, even though the system performance of macro cells increase by reusing the frequency, the performance of macro user equipments(MUEs) decrease because of the strong interference from D2D user equipments(DUEs). Therefore, this paper proposes a dynamic channel management(DCM) scheme for DUEs to guarantee the performance of MUEs as the number of DUEs increases in next generation downlink cellular networks. In the proposed D2D DCM scheme, macro base stations dynamically assign subchannels to DUEs based on the interference information and signal to interference and noise ratio(SINR) of MUEs. Simulation results show that the proposed D2D DCM scheme outperforms other schemes in terms of the mean MUE capacity as the threshold of the SINR of MUEs incareases.

Analytical Approach of Cross-Layer-Based Handoff Scheme in Heterogeneous Mobile Networks (이종의 모바일 네트워크에서 크로스 레이어 기반 핸드오버 기법의 분석적 접근법)

  • Kim, DongHwi;Jeong, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.6
    • /
    • pp.1-16
    • /
    • 2013
  • Smartphones and tablets including phone, calendar are the necessities of modern man. They are one of the MN(Mobile Node), each with wireless network capabilities. Necessities of modern human MNs are almost included cellular module available in LTE/3G and Wi-Fi module for high-speed Internet. Until now, MN mobility management is handled, but using network-based mobility management in this paper. Then, carriers can manage and maintain the network for low-cost. In addition, it was considered that use a lot of modern people with Wi-Fi and LTE/3G, and using Cross-Layer-Based handoff.

Exploiting Multi-Hop Relaying to Overcome Blockage in Directional mmWave Small Cells

  • Niu, Yong;Gao, Chuhan;Li, Yong;Su, Li;Jin, Depeng
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.364-374
    • /
    • 2016
  • With vast amounts of spectrum available in the millimeter wave (mmWave) band, small cells at mmWave frequencies densely deployed underlying the conventional homogeneous macrocell network have gained considerable interest from academia, industry, and standards bodies. Due to high propagation loss at higher frequencies, mmWave communications are inherently directional, and concurrent transmissions (spatial reuse) under low inter-link interference can be enabled to significantly improve network capacity. On the other hand, mmWave links are easily blocked by obstacles such as human body and furniture. In this paper, we develop a multi-hop relaying transmission (MHRT) scheme to steer blocked flows around obstacles by establishing multi-hop relay paths. In MHRT, a relay path selection algorithm is proposed to establish relay paths for blocked flows for better use of concurrent transmissions. After relay path selection, we use a multi-hop transmission scheduling algorithm to compute near-optimal schedules by fully exploiting the spatial reuse. Through extensive simulations under various traffic patterns and channel conditions, we demonstrate MHRT achieves superior performance in terms of network throughput and connection robustness compared with other existing protocols, especially under serious blockage conditions. The performance ofMHRT with different hop limitations is also simulated and analyzed for a better choice of the maximum hop number in practice.

Power Control Scheme Based on Non-Cooperative Game in a Heterogeneous Network (이종 네트워크에서의 비협력 게임 기반 전력 할당 기법)

  • Bae, Insan;Lee, Jinnyoung;Jang, Sungjin;Kim, Jaemoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.11
    • /
    • pp.771-778
    • /
    • 2014
  • We propose Femto-cell power control scheme in HeNet with Game Theory. The Femto-cell which provide high quality with low power is issued by many benefits, however there is a bunch of interferences when many Femto-cells use overlapped bandwidth with Macro-cell. We defined base station of cellular networks and mobile users as players of Game Theory, and configured interference effect among each other as power utility function. Futhermore, we showed enhanced overall system performance, lower power usage and interference decrease by using optimal power.

Development of a browser for signal transduction network to simulate biochemical reaction in a cell (생체내 반응 시뮬레이션을 위한 신호전달 네트워크 브라우저 개발)

  • Yu, Seok Jong;Lee, Sang Joo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.539-542
    • /
    • 2007
  • After introducing some experiment methods including immunoprecipitation and yeast two-hybrid screening, the pool of molecular interaction data is growing fast and databases are produced dramatically. But it is difficult to apply the information to molecular kinetic studies for understanding disease. In this paper, we developed a program that can browse and visualize interactions of cellular molecules using importing heterogeneous external data file. This program support 3D view to navigate and understand more easily and making a signal transduction model that user wants and simulating function to research the model. It was tested for signal transduction of chmotaxis in bacteria.

  • PDF

Electricity Cost Minimization for Delay-tolerant Basestation Powered by Heterogeneous Energy Source

  • Deng, Qingyong;Li, Xueming;Li, Zhetao;Liu, Anfeng;Choi, Young-june
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5712-5728
    • /
    • 2017
  • Recently, there are many studies, that considering green wireless cellular networks, have taken the energy consumption of the base station (BS) into consideration. In this work, we first introduce an energy consumption model of multi-mode sharing BS powered by multiple energy sources including renewable energy, local storage and power grid. Then communication load requests of the BS are transformed to energy demand queues, and battery energy level and worst-case delay constraints are considered into the virtual queue to ensure the network QoS when our objective is to minimize the long term electricity cost of BSs. Lyapunov optimization method is applied to work out the optimization objective without knowing the future information of the communication load, real-time electricity market price and renewable energy availability. Finally, linear programming is used, and the corresponding energy efficient scheduling policy is obtained. The performance analysis of our proposed online algorithm based on real-world traces demonstrates that it can greatly reduce one day's electricity cost of individual BS.