• Title/Summary/Keyword: Heterogeneous Catalysts

Search Result 96, Processing Time 0.028 seconds

A study on production of dry oxidant by decomposition of H2O2 on K-Mn/Fe2O3 catalyst and NO oxidation process according to simulated flue gas flow (K-Mn/Fe2O3 촉매 상 H2O2 분해에 의한 건식산화제 생성 및 모사 배가스 유량에 따른 NO 산화공정)

  • Choi, Hee Young;Shin, Woo Jin;Jang, Jung Hee;Han, Gi Bo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.367-375
    • /
    • 2017
  • In this study, NO oxidation process was studied to increase the NO treatment efficiency of pollutant present in exhaust gas. $H_2O_2$ catalytic cracking was introduced as a method of producing dry oxidizing agents with strong oxidizing power. The $K-Mn/Fe_2O_3$ heterogeneous catalysts applicable to the $H_2O_2$ decomposition process were prepared and their physico-chemical properties were investigated. The prepared dry oxidant was applied to the NO oxidation process to treat the simulated exhaust gas containing NO, NO conversion rates close to 100% were confirmed at various flow rates (5, 10, 20 L/min) of the simulated flue gas.

Revealing Strong Metal Support Interaction during CO Oxidation with Metal Nanoparticle on Reducible Oxide Substrates

  • Park, Dahee;Kim, Sun Mi;Qadir, Kamran;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.264-264
    • /
    • 2013
  • Strong metal-support interaction effect is an important issue in determining the catalytic ac-tivity for heterogeneous catalysis. In this study, we investigated the support effect and the role of organic capping layers of two-dimensional Pt nanocatalysts on reducible metal oxide supports under the CO oxidation. Several reducible metal oxide supports including CeO2, Nb2O5, and TiO2 thin films were prepared via sol-gel techniques. The structure, chemical state and optical property were characterized using XRD, XPS, TEM, SEM, and UV-VIS spectrometer. We found that the reducible metal oxide supports have a homogeneous thin thickness and crystalline structure after annealing at high temperature showing the different optical band gap energy. Langmuir-Blodgett technique and arc plasma deposition process were employed to ob-tain Pt nanoparticle arrays with capping and without capping layers, respectively on the oxide support to assess the role of the supports and capping layers on the catalytic activity of Pt catalysts under the CO oxidation. The catalytic performance of CO oxidation over Pt supported on metal oxide thin films under oxidizing reaction conditions (40 Torr CO and 100 Torr O2) was tested. The results show that the catalytic activity significantly depends on the metal oxide support and organic capping layers of Pt nanoparticles, revealing the strong metal-support interaction on these nanocatalysts systems.

  • PDF

Phase Transfer Catalytic Effects for Thiocyanate Displacement on Benzyl Chloride (티오시안산 염에 의한 염화벤질의 치환반응에 미치는 상이동 촉매효과)

  • Seung Hyun Chang;Mu Hong Yoon;Chang Su Kim;Kwang Bo Chung;Jae Hu Shim
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.651-656
    • /
    • 1989
  • The catalytic effects of several phase-transfer catalysts (PTC) on the liquid-liquid heterogeneous nucleophilic displacement reaction of thiocyanate on benzyl chloride have been determined. Reactions followed a pseudo-first order dependency on the benzyl chloride concentration and the observed rate constant $(k_{obsd})$ were linearly related to the concentration of catalyst and varied with variables such as reaction temperature and solvent. The sequences of catalytic activity of the displacement were $NH_4Cl$ < BTMAC < 18-crown-6 < BTEAC < PEG < TBAC < CTMAB. Enthalpies and entropies of activation associated with the displacement were 15∼20 Kcal$mo^{l-1}$, -12∼-29 eu. respectively and the reaction occurs in the interphase comprising of microemulsion.

  • PDF

Catalytic Activity of Metal-phthalocyanine Bonded on Polymer for Decomposition of Hydrogen Peroxide (고분자에 결합된 금속-프탈로시아닌의 과산화수소수 분해반응에 대한 촉매활성)

  • KimKong Soo 김공수;Yong Chul Chun;Young Woo Lee;Sang Ho Lee
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.662-668
    • /
    • 1989
  • The decomposition reaction of hydrogen peroxide was carried out by using metal-4,4',4",4"'-tetraaminophthalocyanine [Mt-$PcNH_2$, Mt = Fe(III), Co(II)] supported on poly (styrene-co-methacrylic acid), in heterogeneous aqueous system. These catalysts showed a catalse-like activity and Fe(III)-$PcNH_2$ supported on the copolymer was particularly effective for the decomposition of hydrogen peroxide. It was found that the rate of decomposition increased smoothly in the higher pH region and catalytic reaction was interfered by adding $CN^-,\;CNS^-,\;{C_2O_4}^{-2},\;I^-$ ions. The kinetics of the catalytic reaction was also investigated and the reaction proceeds according to the Michaelis-Menten type mechanism.

  • PDF

Synthesis of Nano Sized Cobalt Powder from Cobalt Sulfate Heptahydrate by Liquid Phase Reduction (액상환원공정을 이용한 황산코발트로부터의 코발트 나노분말 합성)

  • An, Se-Hwan;Kim, Se-Hoon;Lee, Jin-Ho;Hong, Hyun-Seon;Kim, Young-Do
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.327-333
    • /
    • 2011
  • Nanostructured cobalt materials have recently attracted considerable attention due to their potential applications in high-density data storage, magnetic separation and heterogeneous catalysts. The size as well as the morphology at the nano scale strongly influences the physical and chemical properties of cobalt nano materials. In this study, cobalt nano particles synthesized by a a polyol process, which is a liquid-phase reduction method, were investigated. Cobalt hydroxide ($Co(OH)_2$), as an intermediate reaction product, was synthesized by the reaction between cobalt sulphate heptahydrate ($CoSO_4{\cdot}7H_2O$) used as a precursor and sodium hydroxide (NaOH) dissolved in DI water. As-synthesized $Co(OH)_2$ was washed and filtered several times with DI water, because intermediate reaction products had not only $Co(OH)_2$ but also sodium sulphate ($Na_2SO_4$), as an impurity. Then the cobalt powder was synthesized by diethylene glycol (DEG), as a reduction agent, with various temperatures and times. Polyvinylpyrrolidone (PVP), as a capping agent, was also added to control agglomeration and dispersion of the cobalt nano particles. The optimized synthesis condition was achieved at $220^{\circ}C$ for 4 hours with 0.6 of the PVP/$Co(OH)_2$ molar ratio. Consequently, it was confirmed that the synthesized nano sized cobalt particles had a face centered cubic (fcc) structure and with a size range of 100-200 nm.

Simulation for Possible Coke-Free Operation of a Packed Catalyst Bed Reactor in the Steam-CO2 Reforming of Natural Gas (천연가스의 수증기-이산화탄소 복합개질용 촉매 충진 반응기의 코킹 회피 운전을 위한 모사)

  • LEE, DEUK KI;LEE, SANG SOO;SEO, DONG JOO;YOON, WANG LAI
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.5
    • /
    • pp.445-452
    • /
    • 2015
  • A tubular packed bed reactor for the steam-$CO_2$ combined reforming of natural gas to produce the synthesis gas of a target $H_2/CO$ ratio 2.0 was simulated. The effects of the reactor dimension, the feed gas composition, and the gas feeding temperature upon the possibility of coke formation across the catalyst bed were investigated. For this purpose, 2-dimensional heterogeneous reactor model was used to determine the local gas concentrations and temperatures over the catalyst bed. The thermodynamic potential distribution of coke formation was determined by comparing the extent of reaction with the equilibrium constant given by the reaction, $CH_4+2CO{\Leftrightarrow}3C+2H_2O$. The simulation showed that catalysts packed in the central region nearer the entrance of the reactor were more prone to coking because of the regional characteristics of lower temperature, lower concentration of $H_2O$, and higher concentration of CO. With the higher feeding temperature, the feed gas composition of the increased $H_2O$ and correspondingly decreased $CO_2$, or the decrease in the reactor diameter, the volume fraction of the catalyst bed subsequent to coking could be diminished. Throughout the simulation, reactor dimension and reaction condition for coking-free operation were suggested.

Theoretical Investigation of Water Adsorption Chemistry of CeO2(111) Surfaces by Density Functional Theory (전자밀도함수이론을 이용한 세륨 산화물의 (111) 표면에서 일어나는 물 흡착 과정 분석)

  • Choi, Hyuk;Kang, Eunji;Kim, Hyun You
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.267-271
    • /
    • 2020
  • Cerium oxide (ceria, CeO2) is one of the most wide-spread oxide supporting materials for the precious metal nanoparticle class of heterogeneous catalysts. Because ceria can store and release oxygen ions, it is an essential catalytic component for various oxidation reactions such as CO oxidation (2CO + O2 2CO2). Moreover, reduced ceria is known to be reactive for water activation, which is a critical step for activation of water-gas shift reaction (CO + H2O → H2 + CO2). Here, we apply van der Waals-corrected density functional theory (DFT) calculations combined with U correction to study the mechanism of water chemisorption on CeO2(111) surfaces. A stoichiometric CeO2(111) and a defected CeO2(111) surface showed different water adsorption chemistry, suggesting that defected CeO2 surfaces with oxygen vacancies are responsible for water binding and activation. An appropriate level of water-ceria chemisorption energy is deduced by vdW-corrected non-local correlation coupled with the optB86b exchange functional, whereas the conventional PBE functional describes weaker water-ceria interactions, which are insufficient to stabilize (chemisorb) water on the ceria surfaces.

Advancing Towards a Sustainable Future: Recent Trends in Catalytic Upcycling of Waste Plastics (지속가능한 미래를 위한 폐플라스틱의 촉매 업사이클링 연구 동향)

  • Taeeun Kwon;Insoo Ro
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.505-516
    • /
    • 2023
  • Plastic's ease of processing drives its growing production, resulting in a surge of plastic waste. Addressing this issue, catalytic upcycling emerges as a promising remedy. Various metals (Ru, Pt, etc.) and supports (TiO2, CeO2, etc.) have been employed for the chemical recycling of polyolefin plastics. Strategies to enhance liquid fuel selectivity and minimize methane include manipulating particle size, introducing heterogeneous metals, and tuning support characteristics. Simultaneously, endeavors to optimize catalysts by reducing precious metal usage were pursued. This study explores enhancing economic viability in hydrogenolysis and hydrocracking reactions, underscoring the potential of catalystdriven upcycling to tackle plastic waste.

Scale-up Study of Heterogeneous Catalysts for Biodiesel Production from Nepalese Jatropha Oil (네팔산 자트로파 오일로부터 바이오디젤 제조를 위한 불균일계 촉매 Scale-up 연구)

  • Sim, Minseok;Lee, Seunghee;Kim, Youngbin;Ku, Huiji;Woo, Jaegyu;Joshi, Rajendra;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.198-204
    • /
    • 2021
  • This study focused on a two-step process using heterogeneous catalysts to produce biodiesel using Nepalese jatropha oil as a raw material. As a first step, the effect of the repetitive regeneration number of Amberlyst-15 on the esterification reaction of FFA in jatropha oil was investigated. Second, the possibility of a transesterification reaction scale-up using a dolomite bead catalyst was tested. Using 120 kg of jatropha seeds from Nepal, 30 L (27 kg) of jatropha oil was obtained, and the jatropha oil yield from the seeds was about 25.0 wt%. The acid value and FFA content of jatropha oil were measured to be 11.3 mgKOH g-1 and 5.65%, respectively. As a result of the esterification reaction of jatropha oil using the Amberlyst-15 catalyst in the form of beads, the acid value of the reaction product could be lowered to 0.26 mgKOH g-1 when the fresh Amberlyst-15 catalyst was used. As the regeneration of the Amberlyst-15 catalyst is repeated, the catalyst has been deactivated, and the esterification reaction performance has deteriorated. The cause of the deactivation seems to be due to the catalyst being broken and impurities being deposited. It was confirmed that the Amberlyst-15 catalyst could be reused up to 5 times for the esterification reaction of jatropha oil. In the second step, the transesterification reaction, a dolomite catalyst, was mass-produced and used in the form of beads. By transesterifying the pretreated jatropha oil in a spinning catalyst basket reactor equipped with 90 g of dolomite bead catalyst, 89.1 wt% of biodiesel yield was obtained in 2 hours after the start of the reaction, which was similar to the transesterification of soybean oil under the same conditions.

A Study on Heterogeneous Catalysts for Transesterification of Nepalese Jatropha Oil (네팔산 Jatropha 오일의 전이에스테르화 반응용 불균일계 촉매 연구)

  • Youngbin Kim;Seunghee Lee;Minseok Sim;Yehee Kim;Rajendra Joshi;Jong-Ki Jeon
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.47-54
    • /
    • 2024
  • Jatropha oil extracted from the seeds of Nepalese Jatropha curcas, a non-edible crop, was used as a raw material and converted to biodiesel through a two-step process consisting of an esterification reaction and a transesterification reaction. Amberlyst-15 catalyst was applied to the esterification reaction between the free fatty acids contained in the Jatropha oil and methanol. The acid value of the Jatropha oil could be lowered from 11.0 to 0.26 mgKOH/g through esterification. Biodiesel was synthesized through a transesterification reaction between Jatropha oil with an acid value of 0.26 mgKOH/g and methanol over NaOH/γ-Al2O3 catalysts. As the loading amount of NaOH increased from 3 to 25 wt%, the specific surface area decreased from 129 to 28 m2/g and the pore volume decreased from 0.249 to 0.129 cm3/g. The amount and intensity of base sites over the NaOH/γ-Al2O3 catalysts increased simultaneously with the NaOH loading amount. It was confirmed that the optimal NaOH loading amount for the NaOH/γ-Al2O3 catalyst was 12 wt%. The optimal temperature for the transesterification reaction of Jatropha oil using the NaOH/γ-Al2O3 catalyst was selected to be 65 ℃. In the transesterification reaction of Jatropha oil using the NaOH/γ-Al2O3 catalyst, the reaction rate was affected by external diffusion limitation when the stirring speed was below 150 RPM, however the external diffusion limitation was negligible at higher stirring speeds.