• Title/Summary/Keyword: Heterodyne

Search Result 164, Processing Time 0.04 seconds

Measurement of electron density of atmospheric pressure Ne plasma jet by laser heterodyne Interferometer with voltage

  • Lim, Jun Sup;Hong, Young June;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.140.1-140.1
    • /
    • 2015
  • Currently, As Plasma application is expanded to the industrial and medical industrial, Low temperature plasma characteristics became important. Especially in Medical industrial, Low temperature plasma directly adapted to human skin, so their plasma parameter is important. One of the plasma parameters is electron density, some kinds of method to measuring electron density are Thomson scattering spectroscopy and Millimeter-wave transmission measurement. But most methods is expensive to composed of experiment system. Heterodyne interferometer system is cheap and simple to setting up, So we tried to measuring electron density by Laser heterodyne interferometer. To measuring electron density at atmospheric pressure, we need to obtain the phase shift signal. And we use a heterodyne interferometer. Our guiding laser is Helium-Neon laser which generated 632 nm laser. We set up to chopper which can make a laser signal like a pulse. Chopper can make a 4 kHz chopping. We used Needle jet as Ne plasma sources. Interference pattern is changed by refractive index of electron density. As this refractive index change, phase shift was occurred. Electron density is changed from Townsend discharge's electron bombardment, so we observed phenomena and calculated phase shift. Finally, we measured electron density by refractive index and electron density relationship. The calculated electron density value is approximately 1015~1016 cm-3. And we studied electron density value with voltage.

  • PDF

Precise Position Control of a Linear Stage with I/Q heterodyne Interferometer Feedback

  • Moon, Chan-Woo;Lee, Sung-Ho;Chung, J.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1142-1146
    • /
    • 2004
  • The ultra precision linear stage is an essential device in the fields of MEMS and Bio technology. A piezo electric motor is widely used for its better linear characteristics, faster response time, and smaller size than conventional electro-magnetic actuator. We develop a new inchworm type motor to implement an actuator-integrated a long stroke linear stage which can move fast. To implement a servo system, we use a heterodyne interferometer as a position sensor, and we propose a new measurement technique using I/Q demodulator, and we propose a counting method to measure the position of fast moving object with low cost circuitry. The characteristics of the actuator and servo system are evaluated by measuring its displacement with a commercial laser interferometer.

  • PDF

Pulsewidth measurement by self-heterodyne in a frequency shifted feedback fiber soliton laser (주파수 변환 귀환 방식의 광섬유 솔리톤 레이저에서 Self Heterodyne에 의한 펄스폭 측정)

  • 윤승철
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.1
    • /
    • pp.68-72
    • /
    • 1999
  • We demonstrate a new pulse characterization scheme relying on self-heterodyning that uses intracavity frequency shifter in a fiber soliton laser with frequency shifted feedback. By heterodyning the frequency-shifted pulse stream with the unshifted one, and by measuring the beat strength with varying the delay length between two pulse streams, we obtain the amplitude autocorrelation function from which we estimate the pulsewidth. The result is in good agreement with that obtained by the autocorrelation relying on the second harmonic generation.

  • PDF

Study of frequency chirping of pulse amplified laser beam by using heterodyne method (헤테로다인 방법을 이용한 펄스 증폭된 레이저빔의 주파수 Chirping연구)

  • 김진태
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.1
    • /
    • pp.70-72
    • /
    • 2002
  • Amplified pulsed laser beam with narrow linewidth was generated from CW laser beam with narrow linewidth by using frequency doubled Nd:YAG laser beam and Bethune cell. The degree of the frequency chirping of the amplified pulse laser was measured by using the heterodyne method and obtained by calculating instantaneous phase change from heterodyne beating signals. The frequency chirping of amplified pulsed laser beam from CW laser beam with sub-MHz linewidth by 10 ns pulse was 80 MHz so that pulsed laser beam with very narrow linewidth was obtained.

Optical Probe of white Light Interferometry for Precision Coordinate Metrology (정밀 삼차원 측정을 위한 백색광 간섭 광학 프로브 개발)

  • 김승우;진종한;강민구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.195-198
    • /
    • 2002
  • Demand for high precision measurement of large area is increasing in many industrial fields. White-light Scanning Interferometer(WSI) is a well-known method for 3D profile measurement. However WSI has some limitations in a measurement range because of the sensing mechanism. Therefore, in this paper we use a heterodyne laser interferometer to get over the limitations of a short measurement range in WSI, We suggest a new WSI system combined with heterodyne laser interferometer. This system is aimed at eliminating Abbe error with measuring the focus point directly. With the use of triggering functionality of WSI, we can use this system as a probe of a precision stage such as a probe of CMM. The suggested system gives a repeatability of 87 nm in the absolute distance measurement test under the laboratory environment.

  • PDF

Nonlinearity error compensation in heterodyne laser interferometer using recursive WLS (순환적 WLS를 이용한 헤테로다인 레이저 간섭계의 비선형 오차 보정)

  • Kim, Dae-Hyun;Heo, Gun-Haeng;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1751-1752
    • /
    • 2008
  • The heterodyne laser interferometer has a nano-meter scale resolution. However, the unwanted nonlinearity error caused from frequency-mixing limits the ultra-precise resolution. In this paper, we propose a recursive WLS algorithm to improve the resolution of heterodyne laser interferometer. Some experimental results show an effectiveness of the recursive WLS algorithm in nano-meter scale resolution.

  • PDF

Adaptive Nonlinearity Compensation in Laser Interferometer using Neural Network (신경망 회로를 이용한 레이저 간섭계의 적응형 오차보정)

  • Heo, Gun-Hang;Lee, Woo-Ram;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.86-88
    • /
    • 2007
  • In the semiconductor manufacturing industry, the heterodyne laser interferometer plays as an ultra-precise measurement system. However, the heterodyne laser interferometer has some unwanted nonlinearity error which is caused from frequency-mixing. This is an obstacle to improve the measurement accuracy in nanometer scale. In this paper we propose a compensation algorithm based on RLS(recursive least square) method and artificial intelligence method, which reduce the nonlinearity error in the heterodyne laser interferometer. With the capacitance displacement sensor we get a reference signal which can be transformed into the intensity domain. Using the back-propagation Neural Network method, we train the network to track the reference signal. Through some experiments, we demonstrate the effectiveness of the proposed algorithm in measurement accuracy.

  • PDF

New Inchworm type Actuator with I/Q heterodyne Interferometer Feedback for a Long Stroke Precision Stage

  • Moon Chanwoo;Lee Sungho;Chung J.K
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.34-39
    • /
    • 2005
  • The precision stage is an essential device for optic fiber assembly systems, micro machines and semiconductor equipments. A new piezoelectric inchworm type actuator is proposed to implement an actuator-integrated long-stroke linear stage. An in-and-quadrature phase (I/Q) heterodyne interferometer is developed as a feedback sensor of a servo system, and a synchronized counting method is proposed. The proposed measurement system can measure the accurate position of fast moving object with robustness to external sensing noise from actuator vibration. The developed servo stage will be applied to optic fiber device assembly system.

Design and Implementation of Receiver for X-Band Transponder (X-Band 트랜스폰더 수신기의 설계 및 제작)

  • 이원우;조경준;김상희;김종헌;이종철;이병제;김남영
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.6
    • /
    • pp.507-513
    • /
    • 2002
  • In this paper, the receiver using Heterodyne type is designed and implemented for a pulse radar at 9.4 GHz. The If amplifier, which occupies a significant size in a Heterodyne receiver for pulse radars, can be removed. Furthermore, by using detector logarithmic video amplifier in baseband, the receiver has a small size and it's characteristic shows a high dynamic range and sensitivity. From the results of measurements, the minimum receiver power of -70 dBm and selectivity of 55 dB are obtained.