• Title/Summary/Keyword: Heterocyclic compounds

Search Result 142, Processing Time 0.028 seconds

Application of Molecular Orbital Theory to Biological chemistry (II). Interactions of Chemical Carcinogens with DNA Bases (分子軌道論의 生物化學에의 應用 (第 2 報). 發癌物質과 DNA 鹽基와의 相互作用)

  • Ho-Soon Kim;Yoon-Yul Park;Byung-Kak Park
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.4
    • /
    • pp.280-287
    • /
    • 1980
  • The interactions of chemical carcinogens, such as polycyclic aromatic hydrocarbons, dimethylaminoazobenzene (DAB) and its derivatives and heterocyclic compounds with tissue components, especially with deoxyribonucleic acid (DNA), were examined by means of simple Huckel method. Assuming that the formations of a loose molecular complex between the carcinogens and the tissue components are the first step of chemical carcinogenesis, the most proble orientation between the chemical carcinogens and adenine-thymine (A=T) pair or guanine-cytosine $(G\equivC)$ pair is determined. It has been found that, in the case of the formation of molecular complex between chemical carcinogens and A=T pair, the two atoms of K-region of the carcinogens and the atom of L-region in the proximity of their K-region are combined correspondingly with C-l' carbon atom in the sugar that is attached to thymine, N-1 nitrogen atom and C-5 carbon atom in the thymine part of A=T pair, while, in the case of that between the carcinogens and $G\equivC$ pair, the above three atoms of the carcinogens are combined correspondingly with C-8 carbon atom, N-9 nitrogen atom and N-3 nitrogen atom in the guanine part of $G\equivC$ pair.

  • PDF

Hydrogen Bonding between Thioacetamide and a Series of Heterocyclic Compounds of Pyridine (Thioacetamide 와 피리딘계 헤테로고리 화합물 사이의 수소 결합에 대한 연구)

  • Park, Jae Heon;Lee, Mi Gyeong;O, In Cheol;Yun, Chang Ju;Choe, Yeong Sang
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.5
    • /
    • pp.345-350
    • /
    • 1994
  • The $v_{a^+}$ Amide II combination band of thioacetamide has been used to evaluate thermodynamic parameters of the hydrogen bonding of thioacetamide(TA) with pyridine(Py), quinoline(Qu), and acridine(Ac) in $CHCl_3$ and $CCl_4$ over the temperature range from 5$^{\circ}C$ to 55$^{\circ}C$. This combination band was resolved into two Lorentzian-Gaussian product bands which have been identified withmonomeric TA and hydrogen bonded TA. The thermodynamic parameters for the hydrogen bonded TA were determined by computer analysis of concentration and temperature dependent spectra. The standard enthalpies for the 1 : 1 hydrogen bonded complex of TA to pyridine, quinoline, and acridine in $CHCl_3$ have been found to be -7.6 kJ/mol, -6.5 kJ/mol, and -5.4 kJ/mol, respectively. And the standard enthalpies for the 1: 1 hydrogen bonded complex of TA to pyridine and quinoline in $CCl_4$ have been found to be -13.3kJ/mol, and -12.0kJ/mol, respectively.

  • PDF

Decomposition of Nitogen Heterocyclic Compounds(NHCs) in Aqueous Solution by Sonication

  • Yoo, Young-Eok;Maeda, Yasuaki
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.171-176
    • /
    • 2003
  • The sonolytic decomposition of NHCs, such as atrazine[6-chloro-N-ethyl-N' -(1-methylethyl)-1,3,5-triazine-2,4-diamine], simazine( 6-chloro-N,N' -diethyl-l ,3,5-triazine-2,4-diamine), trietazine(6-chloro-N,N,N'-triethyl-l,3,5-triazine-2,4-diamine), in water was investigated at a ultrasound frequency of 200kHz with an acoustic intensity of 200W under argon and air atmospheres. The concentration of NHCs decreased with irradiation, indicating pseudo-first-order kinetics. The rates were in the range 1.06∼2.07 (x10/sup -3/ min/sup -1/) under air and 1.30∼2.59(x10/sup -3/ min/sup -1/)under argon at a concentration of 200μM of NHCs. The rate of hydroxyl radicals(·OH) formation from water is 19.8μM min/sup -1/ under argon and 14.7 μM min/sup -1/ under air in the same sonolysis conditions. The sonolysis of NHCs is effectively inhibited, but not completely, by the addition of t-BuOH(2-methyl-2-propanol), which is known to be an efficient ·OH radical scavenger in aqueous sonolysis. This suggests that the main decomposition of NHCs proceeds via reaction with ·OH radical; a thermal reaction also occurs, although its contribution is small. The addition of appropriate amounts of Fenton's reagent [Fe/sup 2+/] accelerates the decomposition. This is probably due to the regeneration of ·OH radicals from hydrogen peroxide, which would be formed from recombination of ·OH radicals and which may contribute a little to the decomposition.

  • PDF

Change of Essential Oil Constituents during Flue-curing Process in Flue-cured Tobacco, NC82 & KF114 (황색종 NC82와 KFl14의 건조단계별 정유성분의 변화)

  • Hong, Yeol;Lim, Heung-Bin;Seok, Young-Sun;Shin, Ju-Sik;Kim, Jong-Yeol;Ra, Do-Young;Lee, Hak-Su
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.23 no.2
    • /
    • pp.168-178
    • /
    • 2001
  • Essential oil in tobacco leaves influences the taste and aroma of cigarette smoke and is important to tobacco quality. This study was conducted to investigate the change in the level of essential oil components during flue-curing process of two flue-cured tobaccos, NC82 and KEl14. Flue-curing process was divided by six steps; harvest stage, the end of yellowing stage, the middle of color fixing stage, the end of color fixing stage, the middle of midrib drying stage, full-cured stage. NC82 in each stage contained 0.28%, 0.30%, 0.35%, 0.36%, 0.40% and 0.42% essential oil, respectively, and KF114 were 0.29%, 0.31%, 0.34%, 0.36%, 0.39% and 0.41%, respectively. Almost all hydrocarbons on the basis of relative peak area were gradually increased in two varieties with curing, neophytadiene content in them was highest at the full-cured stage. Most of alcohols and esters with curing showed a declining trend, but benzyl alcohol was increased in two tobaccos. Ketones were largely increased at the midrib drying stage during the curing process, especially, the most largely increasing constituent was $\beta$-damascenone among them. The content of 2-butylterahydrofuran, heterocyclic compounds, was largely increased at tile color fixing stage. There was no considerable difference between NC82 and KFl14 at the GC profile of essential oil and the pattern of each components during flue-curing process.

  • PDF

Inhibition of Carcinogen-Activating Cytochrome P450 Enzymes by Xenobiotic Chemicals in Relation to Antimutagenicity and Anticarcinogenicity

  • Shimada, Tsutomu
    • Toxicological Research
    • /
    • v.33 no.2
    • /
    • pp.79-96
    • /
    • 2017
  • A variety of xenobiotic chemicals, such as polycyclic aromatic hydrocarbons (PAHs), aryl- and heterocyclic amines and tobacco related nitrosamines, are ubiquitous environmental carcinogens and are required to be activated to chemically reactive metabolites by xenobiotic-metabolizing enzymes, including cytochrome P450 (P450 or CYP), in order to initiate cell transformation. Of various human P450 enzymes determined to date, CYP1A1, 1A2, 1B1, 2A13, 2A6, 2E1, and 3A4 are reported to play critical roles in the bioactivation of these carcinogenic chemicals. In vivo studies have shown that disruption of Cyp1b1 and Cyp2a5 genes in mice resulted in suppression of tumor formation caused by 7,12-dimethylbenz[a]anthracene and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, respectively. In addition, specific inhibitors for CYP1 and 2A enzymes are able to suppress tumor formation caused by several carcinogens in experimental animals in vivo, when these inhibitors are applied before or just after the administration of carcinogens. In this review, we describe recent progress, including our own studies done during past decade, on the nature of inhibitors of human CYP1 and CYP2A enzymes that have been shown to activate carcinogenic PAHs and tobacco-related nitrosamines, respectively, in humans. The inhibitors considered here include a variety of carcinogenic and/or non-carcinogenic PAHs and acethylenic PAHs, many flavonoid derivatives, derivatives of naphthalene, phenanthrene, biphenyl, and pyrene and chemopreventive organoselenium compounds, such as benzyl selenocyanate and benzyl selenocyanate; o-XSC, 1,2-, 1,3-, and 1,4-phenylenebis(methylene)selenocyanate.

Aflatoxin: Factors Affecting Aflatoxin Production (Aflatoxin과 그 생성(生成)에 관련되는 주요인(主要因))

  • Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.13 no.1
    • /
    • pp.117-126
    • /
    • 1984
  • Aflatoxins are toxic and carcinogenic secondary metabolites which are produced by trains of A. flavus and A. parasiticus during their growth on foods and feedstuffs. Aflatoxins are a group of closely related heterocyclic compounds of which $B_1$, $B_2$, and $G_2$ are the major members. Aflatoxins are synthesized via a polyketide pathway in which the general steps are acetate, an-thraquinones, xanthone and aflatoxins. Aflatoxin formation is favored by high moisture or high $a_w$(0.95${\sim}$0.99). The limiting $a_w$ for aflatoxin production on agricultural commodities is 0.83. Optimum temperature for aflatoxin production by the molds is $25{\sim}30^{\circ}C$ and the incubation time for the maximum production of the toxin is 7${\sim}$15 days. The limiting temperatures for aflatoxin production are ${\leq}7.5^{\circ}C\;and\;\geq40^{\circ}C$. Cycling temperatures may or may not stimulate aflatoxin production depending on the amplitude of cycling, substrate and strains of molds. Aflatoxin pro-ducing molds are aerobic organisms and thus have a requirement for oxygen. A decreasing $O_2$ concentration and/or increasing concentrations of $CO_2$ or $N_2$ depress the mold growth and aflatoxin formation. A. flavus grows competitively or associatively in the presence of other microorganisms and occasionally loses the competition with other microorganisms. Some lactic acid bacteria have been shown to reduce growth and aflatoxin production by A. parasiticus. Carbon source is the most important nutritional factors affecting aflatoxin formation by the molds. Sucrose, fructose and glucose are the most favorable carbon sources. Food substrates of plant derived products which have high carbohydrate content such as agricultural commodities and their products are most vulnerable to contamination by aflatoxins.

  • PDF

Interaction of 2-Hydroxyquinoxaline (2-HQ) on Soil Enzymes and Its Degradation: A Review

  • Gangireddygari, Venkata Subba Reddy;Bontha, Rajasekhar Reddy;Yoon, Ju-Yeon
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.4
    • /
    • pp.399-410
    • /
    • 2020
  • The United Nations project the world population to reach 10 billion by the year 2057. To increase the food of the ever-increasing world population, agrochemicals are indispensable tools to the boon in agriculture production. These agrochemicals are a serious threat to the health of humans, plants, and animals. Agrochemicals are ultimately reached to the main reservoir/sink such as soil and contaminating the groundwater, disturb the soil health and in turn a serious threat to biogeochemical cycling and the entire biosphere. Among agrochemicals, quinalphosis one of the most repeatedly and widely used insecticides in the control of a wide range of pests that attack various crops. Quinalphos is shown to be primarily toxic in organisms by acetylcholinesterase enzyme action. Hydrolysis of quinalphos produces amajor metabolite 2-hydroxyquinoxaline (2-HQ), which has shown secondary toxicity in organisms. 2-HQ is reported to be mutagenic, carcinogenic, growth inhibition and induce oxidative stress in organisms. Quinoline is a heterocyclic compound and structural resemblance of 2-HQ with minor changes, but its degradation studies are enormous compared to the 2-HQ compound. Biotic factors in fate and behavior of 2-HQ in the environment are least studied. 2-HQ interactions with soil enzymes are vary from soil to soil. Based on the toxicity of 2-HQ in our stockpile we need to isolate a handful of microorganisms to treat this persistent metabolite and also other metabolites/compounds.This brief review will be significant from the point of biological and environmental safety.

Sources, Components, Structure, Catalytic Mechanism and Applications: a Critical Review on Nicotinate Dehydrogenase

  • Zhi Chen;Xiangjing Xu;Xin Ju;Lishi Yan;Liangzhi Li;Lin Yang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.6
    • /
    • pp.707-714
    • /
    • 2023
  • Plant-derived insecticide-neonicotinoid insecticides (NIs) played a crucial role in the development of agriculture and food industry in recent years. Nevertheless, synthesis of these nitrogen-containing heterocyclic compounds with an effective and greener routing remains challenging especially to the notion raise of "green chemistry" and "atom economy". While bio-catalyzed methods mediated by nicotinate dehydrogenase (NDHase) then provide an alternative. The current review mainly focuses on the introduction of sources, components, structure, catalytic mechanism and applications of NDHase. Specifically, NDHase is known as nicotinic acid hydroxylase and the sources principally derived from phylum Proteobacteria. In addition, NDHase requires the participation of the electron respiratory chain system on the cell membrane. And the most important components of the electron respiratory chain are hydrogen carrier, which is mainly composed of iron-sulfur proteins (Fe-S), flavin dehydrogenase (FAD), molybdenum binding protein and cytochromes. Heterologous expression studies were hampered by the plasmid and host with high efficiency and currently only Pseudomonas entomophila L48 as well as Comamonas testosterone was successfully utilized for the expression of NDHase. Furthermore, it is speculated that the conjugate and inductive effects of the substituent group at position 3 of the substrate pyridine ring exerts a critical role in the hydroxylation reactions at position 6 concerning about the substrate molecular recognition mechanism. Finally, applications of NDHase are addressed in terms of pesticide industry and wastewater treatment. On conclusion, this critical review would not only deepen our understanding of the theory about NDHase, but also provides the guideline for future investigation of NDHase.

32P-postlabeling Analysis of 7H-Dibenzo [c,g] carbazole and Dibenz [a,j] acridine DNA Adduct in Mice (7H-Dibenzo [c,g] carbazole과 Dibenz[a,j] acridine에 의한 DNA adduct의 32P-postlabeling 분석)

  • Roh, JH;Moon, YH;Warshawsk, D.;Talaska, G.
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.3 no.1
    • /
    • pp.14-21
    • /
    • 1993
  • N-Heterocyclic aromatics (NHA) are widely occurring environmental pollutants formed during the pyrolysis of nitrogen-containing organic chemicals. NAH are found in significant amounts in tobacco condensates, synthetic fuels, polluted river sediment, and effluents from the heating of coal. Following topical application 7H-dibenzo[c, g]carbazole (DBC) induces cancer in liver as well as skin, indicating that dermal exposure can lead to systemic effect. DBC and dibenz[a,j]acridine (DBA) are examples of NHA. The potency of many carcinogenic compounds is related, at least in part, to the efficiency of their biological activation. We undertook studies to determine which initial metabolites lead to the formation of high levels of carcinogen-DNA adducts in vivo. DBC and DBA's, DBA, trans-DBA-1,2-dihydrodiol (DBA-1,2-DHD), trans-DBA-3,4-dihydrodiol (DBA-3,4-DHD), and trans-DBA-5,6-dihydrodiol (DBA-5,6-DHD), were applied to the skin of mice. There were six adducts that were related to DBC application. These addusts were seen in the target organ, liver at high levels, but at very low levels in non-target organs, skin, lung and kidney. In skin, DBA produced two distinct adducts. The same two adducts were seen when DBA-3,4-DHD was applied. In addition the total adduct level elicited by DBA-3,4-DHD higher than that of parent compound. Two adducts were seen when DBA-5,6-DHD was applied, but these were very different from adducts seen with DBA. These results suggested that activation of DBA to DNA-binding compounds in skin includes initial formation of DBA-3,4-DHD.

  • PDF

Synthesis and Antitumor Evaluation of cis-(1,2-Diaminoethane) dichloroplatinum (II) Complexes Linked to 5- and 6-Methyleneuracil and -uridine Analogues

  • Kim, Jack-C.;Lee, Min-Hwa;Choi, Soon-Kyu
    • Archives of Pharmacal Research
    • /
    • v.21 no.4
    • /
    • pp.465-469
    • /
    • 1998
  • The search for platinum (II)-based compounds with improved therapeutic properties was prompted to design and synthesize a new family of water-soluble, third generation cis-diaminedichloroplatinum (II) complexes linked to uracil and uridine. Six heretofore unreported uracil and uridine-platinum (II) complexes are; [N-(uracil-5-yl-methyl)ethane-1,2-di-amine]dichloroplatinum (II) (3a), [N-(uracil-6-yl-methyl)ethane-1,2-diaminel dichloroplatinum (II) (3b), t[N-($2^1$, $3^1$,$5^1$-tri-O-acetyl)uridine-5-yl-methyl] ethane-1,2-diamineldichloroplatinum (II) (6a), {[N-($2^1$,$3^1$, $5^1$-tri-O-acetyl) uridine-6-yl-methyl]ethane-1,2-diamine)dichloroplatinum (II) (6b),[N-(uridine- 5-yl-methyl)ethane-1,2-diamine]dichloroplatinum (II) (7a), [N-(uridine-6-yl- methyl)ethane-1,2-diamine]dichloroplatinum (II) (7b). These analogues were prepared from the key starting materials, 5-chloromethyluracil (1a) and 6-chloromethyluracil (1b) which were reacted with ethylenediamine to afford the respective 5-[(2-aminoethyl)aminol methyluracil (2a) and 6-[(2-aminoethyl)amino]methyluracil (2b). The cis-platin complexes 3a and 3b were obtained through the reaction of the respective 2a and 2b with potassium tetrachloroplatinate (II). The heterocyclic nucleic acid bases 1a and 1b were efficiently introduced on the .betha.-D-ribose ring via a Vorbruggen-type nucleoside coupling procedure with hexamethyldisilazane, trimethylchlorosilane and stannic chloride under anhydrous acetonitrile to yield the stereospecific .betha.-anomeric 5-chloromethyl- $2^1$,$3^1$,$5^1$-tri-O-acetyluridine (4a) and 6-chloromethyl-$2^1$,$3^1$,$5^1$-tri-O-acetyluridine (4b), respectively. The nucleosides 4a and 4b were coupled with ethylenediamine to provide the respective 5-[(amino-ethyl)aminolmethyl-$2^1$,$3^1$,$5^1$-tri-O-acetyluridine (5a) and 6-[(aminoethyl)amino] methyl-$2^1$,$3^1$,$5^1$-tri-O-acetyluridine (5b). The diamino-uridines 5a and 5b were reacted with potassium tetrachloroplatinate (II) to give the novel nucleoside complexes, 6a and 6b, respectively which were deacetylated into the free nucleosides, 7a and 7b by the treatment with CH$_{3}$ONa. The cytotoxic activities were evaluated against three cell lines (FM-3A, P-388 and J-82) and none of the synthesized compounds showed any significant activity.

  • PDF