• 제목/요약/키워드: Hetero electrode

Search Result 29, Processing Time 0.027 seconds

Space Charge Phenomena in Polyimide Films and Effects of Absorbed Water (폴리이미드 박막의 공간전하현상 및 수분의 영향)

  • Yun, Ju-Ho;Choi, Yong-Sung;Hwang, Jong-Sun;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.82-85
    • /
    • 2008
  • Polyimide is widely used as a high-temperature insulating material. Space charge distributions in polyimide (PI) films strongly depend upon electric field, temperature, water content and so on. We observed space charge distributions in PI films with various water contents. When a dc field was applied to as-received PI films or water-treated PI films, positive and negative homo space charges were observed near the respective electrodes at 333 K. In dried PI films, the homo space charges were much reduced, and positive and negative hetero space charges in the bulk were clearly observed. The space charge amounts in water-treated PI films were smaller than in as-received ones, while the current density in water-treated PI film was larger than that in as-received one by two or more orders of magnitude. These suggest not only that the charge injection from the electrode is enhanced by absorbed water but also that absorbed water makes carriers mobile. The decay of space charge was also faster in water-treated PI than in as-received or dried one. This also supports the enhancement of apparent mobilities of carriers in PI by absorbed water.

  • PDF

Growth of Highly (100) Oriented (Na0.5Bi0.5)TiO3 Thin Films on LaNiO3 Electrode (LaNiO3 전극위에 (100)으로 배향된 (Na0.5Bi0.5)TiO3 박막의 성장)

  • Yoo Young-Bae;Park Min-Seok;Son Se-mo;Chung Su-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.2
    • /
    • pp.176-180
    • /
    • 2006
  • [ $(Na_{0.5}Bi_{0.5})TiO_3$ ][NBT] thin films were prepared on a highly (100) oriented $LaNiO_3[LNO]$ by sol-gel process. X-ray diffraction patterns of the NBT films annealed above $600^{\circ}C$ for 5 minutes have confirmed a highly (100) oriented growth and pseudocubic structure (a=3.884${\AA}$). The (l00) orientation factor increased from 90 to $99\%$ with increasing soaking time from 5 to 60 minutes at $600^{\circ}C$. The NBT films ($600^{\circ}C$/5 min,) have a flat and dense microstructure with large columnar grains, and their grain size are about 44 nm. The Au/NBT/LNO/Si hetero structure sample show a ferroelectric properties.

Space Charge Phenomena in Polyimide Films (폴리이미드 박막의 공간전하현상)

  • Yun, Ju-Ho;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.311-312
    • /
    • 2007
  • Polyimide is widely used as a high-temperature insulating material. Space charge distributions in polyimide (PI) films strongly depend upon electric field, temperature, water content and so on. We observed space charge distributions in PI films with various water contents. When a dc field was applied to as-received PI films or water-treated PI films, positive and negative homo space charges were observed near the respective electrodes at 333 K. In dried PI films, the homo space charges were much reduced, and positive and negative hetero space charges in the bulk were clearly observed. The space charge amounts in water-treated PI films were smaller than in as-received ones, while the current density in water-treated PI film was larger than that in as-received one by two or more orders of magnitude. These suggest not only that the charge injection from the electrode is enhanced by absorbed water but also that absorbed water makes carriers mobile. The decay of space charge was also faster in water-treated PI than in as-received or dried one. This also supports the enhancement of apparent mobilities of carriers in PI by absorbed water.

  • PDF

A Research Trend on High Density Polyethylene Electrical Strength (폴리이미드 박막의 공간전하현상에 관한 연구 동향)

  • Choi, Keun-Ho;Oh, Chang-Keun;Shin, Hyun-Man;Hwang, Jong-Sun;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1984-1985
    • /
    • 2007
  • Polyimide is widely used as a high-temperature insulating material. Space charge distributions in polyimide (PI) films strongly depend upon electric field, temperature, water content and so on. We observed space charge distributions in PI films with various water contents. When a dc field was applied to as-received PI films or water-treated PI films, positive and negative homo space charges were observed near the respective electrodes at 333 K. In dried PI films, the homo space charges were much reduced, and positive and negative hetero space charges in the bulk were clearly observed. The space charge amounts in water-treated PI films were smaller than in as-received ones, while the current density in water-treated PI film was larger than that in as-received one by two or more orders of magnitude. These suggest not only that the charge injection from the electrode is enhanced by absorbed water but also that absorbed water makes carriers mobile. The decay of space charge was also faster in water-treated PI than in as-received or dried one. This also supports the enhancement of apparent mobilities of carriers in PI by absorbed water.

  • PDF

The Post Annealing Effect of Organic Thin Film Solar Cells with P3HT:PCBM Active Layer (P3HT:PCBM 활성층을 갖는 유기 박막태양전지의 후속 열처리 효과)

  • Jang, Seong-Kyu;Gong, Su-Cheol;Chang, Ho-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.2
    • /
    • pp.63-67
    • /
    • 2010
  • The organic solar cells with Glass/ITO/PEDOT:PSS/P3HT:PCBM/Al structure were fabricated using regioregular poly (3-hexylthiophene) (P3HT) polymer:(6,6)- phenyl $C_{61}$-butyric acid methyl ester (PCBM) fullerene polymer as the bulk hetero-junction layer. The P3HT and PCBM as the electron donor and acceptor materials were spin casted on the indium tin oxide (ITO) coated glass substrates. The optimum mixing concentration ratio of photovoltaic layer was found to be P3HT:PCBM = 4:4 in wt%, indicating that the short circuit current density ($J_{SC}$), open circuit voltage ($V_{OC}$), fill factor (FF) and power conversion efficiency (PCE) values were about 4.7 $mA/cm^2$, 0.48 V, 43.1% and 0.97%, respectively. To investigate the effects of the post annealing treatment, as prepared organic solar cells were post annealed at the treatment time range from 5min to 20min at $150^{\circ}C$. $J_{SC}$ and $V_{OC}$ increased with increasing the post annealing time from 5min to 15min, which may be originated from the improvement of the light absorption coefficient of P3HT and improved ohmic contact between photo voltaic layer and Al electrode. The maximum $J_{SC},\;V_{OC}$, FF and PCE values of organic solar cell, which was post annealed for 15min at $150^{\circ}C$, were found to be about 7.8 $mA/cm^2$, 0.55 V, 47% and 2.0%, respectively.

Effect of Self-Assembled Monolayer Treated ZnO on the Photovoltaic Properties of Inverted Polymer Solar Cells

  • Yoo, Seong Il;Do, Thu Trang;Ha, Ye Eun;Jo, Mi Young;Park, Juyun;Kang, Yong-Cheol;Kim, Joo Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.569-574
    • /
    • 2014
  • Inverted bulk hetero-junction polymer solar cells (iPSC) composed of P3HT/PC61BM blends on the ZnO modified with benzoic acid derivatives-based self-assembled monolayers (SAM) are fabricated. Compared with the device using the pristine ZnO, the devices with ZnO surface modified SAMs derived from benzoic acid such as 4-(diphenylamino)benzoic acid (DPA-BA) and 4-(9H-carbazol-9-yl)benzoic acid (Cz-BA) as an electron transporting layer show improved the performances. It is mainly attributed to the favorable interface dipole at the interface between ZnO and the active layer, the eective passivation of the ZnO surface traps, decrease of the work function and facilitating transport of electron from PCBM to ITO electrode. The power conversion eciency (PCE) of iPSCs based on DPA-BA and Cz-BA treated ZnO reaches 2.78 and 2.88%, respectively, while the PCE of the device based on untreated ZnO is 2.49%. The open circuit voltage values ($V_{oc}$) of the devices with bare ZnO and SAM treated ZnO are not much different. Whereas, higher the fill factor (FF) and lower the series resistance ($R_s$) are obtained in the devices with SAMs modification.

Fabrication of Schottky Device Using Lead Sulfide Colloidal Quantum Dot

  • Kim, Jun-Kwan;Song, Jung-Hoon;An, Hye-Jin;Choi, Hye-Kyoung;Jeong, So-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.189-189
    • /
    • 2012
  • Lead sulfide (PbS) nanocrystal quantum dots (NQDs) are promising materials for various optoelectronic devices, especially solar cells, because of their tunability of the optical band-gap controlled by adjusting the diameter of NQDs. PbS is a IV-VI semiconductor enabling infrared-absorption and it can be synthesized using solution process methods. A wide choice of the diameter of PbS NQDs is also a benefit to achieve the quantum confinement regime due to its large Bohr exciton radius (20 nm). To exploit these desirable properties, many research groups have intensively studied to apply for the photovoltaic devices. There are several essential requirements to fabricate the efficient NQDs-based solar cell. First of all, highly confined PbS QDs should be synthesized resulting in a narrow peak with a small full width-half maximum value at the first exciton transition observed in UV-Vis absorbance and photoluminescence spectra. In other words, the size-uniformity of NQDs ought to secure under 5%. Second, PbS NQDs should be assembled carefully in order to enhance the electronic coupling between adjacent NQDs by controlling the inter-QDs distance. Finally, appropriate structure for the photovoltaic device is the key issue to extract the photo-generated carriers from light-absorbing layer in solar cell. In this step, workfunction and Fermi energy difference could be precisely considered for Schottky and hetero junction device, respectively. In this presentation, we introduce the strategy to obtain high performance solar cell fabricated using PbS NQDs below the size of the Bohr radius. The PbS NQDs with various diameters were synthesized using methods established by Hines with a few modifications. PbS NQDs solids were assembled using layer-by-layer spin-coating method. Subsequent ligand-exchange was carried out using 1,2-ethanedithiol (EDT) to reduce inter-NQDs distance. Finally, Schottky junction solar cells were fabricated on ITO-coated glass and 150 nm-thick Al was deposited on the top of PbS NQDs solids as a top electrode using thermal evaporation technique. To evaluate the solar cell performance, current-voltage (I-V) measurement were performed under AM 1.5G solar spectrum at 1 sun intensity. As a result, we could achieve the power conversion efficiency of 3.33% at Schottky junction solar cell. This result indicates that high performance solar cell is successfully fabricated by optimizing the all steps as mentioned above in this work.

  • PDF

Impedance Spectroscopy Analysis on the LaAlO3/SrxCa1-xTiO3/SrTiO3 Hetero-Oxide Interface System

  • Park, Da-Hee;Kwon, Kyoung-Woo;Park, Chan-Rok;Choi, Yoo-Jin;Bae, Seung-Muk;Baek, Senug-Hyub;Kim, Jin-Sang;Hwang, Jin-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.188.2-188.2
    • /
    • 2015
  • The presence of the conduction interface in epitaxial $LaAlO_3/SrTiO_3$ thin films has opened up challenging applications which can be expanded to next-generation nano-electronics. The metallic conduction path is associated with two adjacent insulating materials. Such device structure is applicable to frequency-dependent impedance spectroscopy. Impedance spectroscopy allows for simultaneous measurement of resistivity and dielectric constants, systematic identification of the underlying electrical origins, and the estimation of the electrical homogeneity in the corresponding electrical origins. Such unique capability is combined with the intentional control on the interface composition composed of $SrTiO_3$ and $CaTiO_3$, which can be denoted by $SrxCa1-_xTiO_3$. The underlying $Sr_xCa1-_xTiO_3$ interface was deposited using pulsed-laser deposition, followed by the epitaxial $LaAlO_3$ thin films. The platinum electrodes were constructed using metal shadow masks, in order to accommodate 2-point electrode configuration. Impedance spectroscopy was performed as the function of the relative ratio of Sr to Ca. The respective impedance spectra were analyzed in terms of the equivalent circuit models. Furthermore, the impedance spectra were monitored as a function of temperature. The ac-based characterization in the 2-dimensional conduction path supplements the dc-based electrical analysis. The artificial manipulation of the interface composition will be discussed towards the electrical application of 2-dimensional materials to the semiconductor devices in replacement for the current Si-based devices.

  • PDF

MXene Based Composite Membrane for Water Purification and Power Generation: A Review (정수 및 발전을 위한 맥신(MXene) 복합막에 관한 고찰)

  • Seohyun Kim;Rajkumar Patel
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.181-190
    • /
    • 2023
  • Wastewater purification is one of the most important techniques for controlling environmental pollution and fulfilling the demand for freshwater supply. Various technologies, such as different types of distillations and reverse osmosis processes, need higher energy input. Capacitive deionization (CDI) is an alternative method in which power consumption is deficient and works on the supercapacitor principle. Research is going on to improve the electrode materials to improve the efficiency of the process. A reverse electrodialysis (RED) is the most commonly used desalination technology and osmotic power generator. Among many studies conducted to enhance the efficiency of RED, MXene, as an ion exchange membrane (IEM) and 2D nanofluidic channels in IEM, is rising as a promising way to improve the physical and electrochemical properties of RED. It is used alone and other polymeric materials are mixed with MXene to enhance the performance of the membrane further. The maximum desalination performances of MXene with preconditioning, Ti3C2Tx, Nafion, and hetero-structures were respectively measured, proving the potential of MXene for a promising material in the desalination industry. In terms of osmotic power generating via RED, adopting MXene as asymmetric nanofluidic ion channels in IEM significantly improved the maximum osmotic output power density, most of them surpassing the commercialization benchmark, 5 Wm-2. By connecting the number of unit cells, the output voltage reaches the point where it can directly power the electronic devices without any intermediate aid. The studies around MXene have significantly increased in recent years, yet there is more to be revealed about the application of MXene in the membrane and osmotic power-generating industry. This review discusses the electrodialysis process based on MXene composite membrane.