• Title/Summary/Keyword: Herpes simplex encephalitis

Search Result 13, Processing Time 0.016 seconds

Ginsenoside Rg5, a potent agonist of Nrf2, inhibits HSV-1 infection-induced neuroinflammation by inhibiting oxidative stress and NF-κB activation

  • Buyun Kim;Young Soo Kim;Wei Li;Eun-Bin Kwon;Hwan-Suck Chung;Younghoon Go;Jang-Gi Choi
    • Journal of Ginseng Research
    • /
    • v.48 no.4
    • /
    • pp.384-394
    • /
    • 2024
  • Background: Herpes simplex virus type 1 (HSV-1), known to latently infect the host's trigeminal ganglion, can lead to severe herpes encephalitis or asymptomatic infection, potentially contributing to neurodegenerative diseases like Alzheimer's. The virus generates reactive oxygen species (ROS) that significantly impact viral replication and induce chronic inflammation through NF-κB activation. Nuclear factor E2-related factor 2 (Nrf2), an oxidative stress regulator, can prevent and treat HSV-1 infection by activating the passive defense response in the early stages of infection. Methods and results: Our study investigated the antiviral effects of ginsenoside Rg5, an Nrf2 activator, on HSV-1 replication and several host cell signaling pathways. We found that HSV-1 infection inhibited Nrf2 activity in host cells, induced ROS/NF-κB signaling, and triggered inflammatory cytokines. However, treatment with ginsenoside Rg5 inhibited ROS/NF-κB signaling and reduced inflammatory cytokines through NRF2 induction. Interestingly, the Nrf2 inhibitor ML385 suppressed the expression of NAD(P)H quinone oxidoreductase 1(NQO1) and enhanced the expression of KEAP1 in HSV-1 infected cells. This led to the reversal of VP16 expression inhibition, a protein factor associated with HSV-1 infection, thereby promoting HSV-1 replication. Conclusion: These findings suggest for the first time that ginsenoside Rg5 may serve as an antiviral against HSV-1 infection and could be a novel therapeutic agent for HSV-1-induced neuroinflammation.

Evaluation of Anti-Herpes Simplex Virus Type 1 Activity of Acyclovir by Using Mouse Intracerebral Infection Model (마우스 대뇌감염모델을 이용한 Acyclovir의 항Herpes Simplex Virus Type 1 약효평가)

  • Lee, Chong-Kyo;Kim, Hae-Soo
    • The Journal of Korean Society of Virology
    • /
    • v.28 no.1
    • /
    • pp.63-69
    • /
    • 1998
  • To establish in vivo antiviral evaluation system by using murine herpesvirus intracerebral infection model, 5-6 female BALB/c mice per group aged 5 weeks were inoculated i.c. into cerebrum with different inocular HSV-1 F. Signs of clinical disease noted everyday for one month. Observed were body weight decrease, neurological signs and death caused by encephalitis. Mice discontinued body weight decrease were recovered from the disease, and keratitis was often observed during recovery. The groups inoculated with higher than 1,000 PFU showed 100% mortaltiy and $LD_{50}$ was <100 PFU/mouse. To study the effect of virus inoculum sizes on antiviral effect of acyclovir (ACV), mice inoculated with different inocula were administered i.p. with different doses of ACV immediately after infection, and twice a day for 5 days. The higher inculum size, the less protective. $ED_{50}$ of ACV was >25, >25, 18.4 and 8.0 mg/kg b.i.d. in the group infected with 1,000,000, 100,000, 10,000 and 1,000 PFU/mouse, respectively. $LD_{50}$ of ACV was 62.5 mg/kg b.i.d. Therapeutic index of ACV was <2.5, <2.5, 3.0 and 7.0 in the groups with inocula 1,000,000, 100,000, 10,000 and 1,000 PFU/mouse, respectively. Inoculum size 1,000 PFU/mouse showing 100% mortaltiy and 5-6 days mean time to death, 5 days drug administration and 14 days observation will be future experimental conditions.

  • PDF

Diagnostic Evaluation of the BioFire® Meningitis/Encephalitis Panel: A Pilot Study Including Febrile Infants Younger than 90 Days (BioFire® Meningitis/Encephalitis Panel의 진단적 유용성 평가: 90일 미만 발열영아에서의 예비 연구)

  • Kim, Kyung Min;Park, Ji Young;Park, Kyoung Un;Sohn, Young Joo;Choi, Youn Young;Han, Mi Seon;Choi, Eun Hwa
    • Pediatric Infection and Vaccine
    • /
    • v.28 no.2
    • /
    • pp.92-100
    • /
    • 2021
  • Purpose: Rapid detection of etiologic organisms is crucial for initiating appropriate therapy in patients with central nervous system (CNS) infection. This study aimed to evaluate the diagnostic value of the BioFire® Meningitis/Encephalitis (ME) panel in detecting etiologic organisms in cerebrospinal fluid (CSF) samples from febrile infants. Methods: CSF samples from infants aged <90 days who were evaluated for fever were collected between January 2016 and July 2019 at the Seoul National University Children's Hospital. We performed BioFire® ME panel testing of CSF samples that had been used for CSF analysis and conventional tests (bacterial culture, Xpert® enterovirus assay, and herpes simplex virus-1 and -2 polymerase chain reaction) and stored at -70℃ until further use. Results: In total, 72 (24 pathogen-identified and 48 pathogen-unidentified) CSF samples were included. Using BioFire® ME panel testing, 41 (85.4%) of the 48 pathogen-unidentified CSF samples yielded negative results and 22 (91.7%) of the 24 pathogen-identified CSF samples yielded the same results (enterovirus in 19, Streptococcus agalactiae in 2, and Streptococcus pneumoniae in 1) as those obtained using the conventional tests, thereby resulting in an overall agreement of 87.5% (63/72). Six of the 7 pathogen-unidentified samples were positive for human parechovirus (HPeV) via BioFire® ME panel testing. Conclusions: Compared with the currently available etiologic tests for CNS infection, BioFire® ME panel testing demonstrated a high agreement score for pathogen-identified samples and enabled HPeV detection in young infants. The clinical utility and cost-effectiveness of BioFire® ME panel testing in children must be evaluated for its wider application.