• Title/Summary/Keyword: Herpes simplex Virus-Thymidine kinase

Search Result 33, Processing Time 0.04 seconds

Antitunor Effect of Carcinoma cells Ttransduced with Herpes simplex virus-thymidine kinase by Gancyclovir and Radiation (Herpes simplex virus-thymidine kinase 유전자가 전이된 종양 세포에서 Gancyclovir와 방사선 조사에 의한 항 종양 효과)

  • Lee, Jae Woo;Oh, Seong Taek;Ahn, Chan Hyuk;Lim, Kun Woo;Cho, Hyun-Il;Kim, Gum Ryong;Kim, Tai-Gyu
    • IMMUNE NETWORK
    • /
    • v.1 no.1
    • /
    • pp.45-52
    • /
    • 2001
  • Background: Many types of cancer become resistant to current chemotherapeutic and radiotherapeutic intervention. To overcome this situation application of gene therapy by the introduction of suicide genes followed by their prodrugs may be promising. A viral enzyme, Herpes simplex thymidine kinase (HSV-tk), which converts ganciclovir from an inactive prodrug to a cytotoxic agent by phosphorylation, are being actively investigated for use in gene therapy for cancer. The purpose of this study was to determine whether combining prodrug-activating gene therapy and irradiation might result in enhanced antitumor effects. Methods: The HSV-tk gene was cloned into the retroviral vector, pLXSN and established the clones producing retroviruses carrying the HSV-tk gene. The carcinoma cell line, HCT116 and Huh-7 were transduced with high-titer recombinant retroviruses. These cell lines were treated with ganciclovir before or after irradiation for the defining combinational effect of suicide gene therapy and radiotherapy. Results: The titers of cloned PA3 17 amphotropic retroviruses ranged from 4 to 6 X $10^6CFU/ml4$. After selectional periods, the expression of HSV-tk was confirmed by reverse-transcriptase polymerase chain reaction (RT-PCR). The growth of cells expressing HSV-tk was inhibited as increase of GCV dose after 48 hr and the growth inhibitory effect of GCV was much higher after 72 hr. When the cells transduced with HSV-tk gene were exposed to radiation, the growth inhibitory effect of GCV was significantly increased, as compared with non-transduced parental cells. Conclusions: The results suggest that the addition of HSV-tk gene therapy to standard radiation therapy may improve the effectiveness of treatment for solid tumors.

  • PDF

Constructions of a Transfer Vector Containing the gX Signal Sequence of Pseudorabies Virus and a Recombinant Baculovirus

  • Lee, Hyung-Hoan;Kang, Hyun;Kim, Jung-Woo;Hong, Seung-Kuk;Kang, Bong-Joo;Song, Jae-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.541-547
    • /
    • 1999
  • Constructions of a transfer vector and a recombinant baculovirus using the thymidine kinase gene of the Herpes simplex virus type 1 strain F (HSV -1) were carried out. Newly cloned transfer vector, pHcgXIIIB, was constructed by insertion of the glycoprotein gX gene signal peptide sequence of Pseudorabies virus into the baculovirus vector pHcEV-IV. The gX sequence was inserted just downstream from the promoter for the polyhedrin gene of the Hyphantria cunea nuclear polyhedrosis virus (HcNPV). HSV-1 thymidine kinase(tk) gene (1.131 kb) was used as a candidate gene for transferring into the baculovirus expression system. The tk gene was inserted into a BamHI site downstream from the gX sequence-promoter for the polyhedrin gene in the pHcgXIIIB transfer vector and was transferred into the infectious lacZ-HcNPV expression vector. Recombinant virus was isolated and was named gX-TK-HcNPV. The recombinant virus produced a 45 kDa gX-TK fusion protein in Spodoptera frugiperda cells, which was confirmed by Western blot analysis. Microscopic examination of gX-TK-HcNPV-infected cells revealed normal multiplication. Fluorescent antibody staining indicated that the gX-TK fusion protein was present in the cytoplasm. These results indicated that the transfer vector successfully transferred the gX-tk gene into the baculovirus expression system.

  • PDF

In Vitro Uptakes of Radiolabeled IVDU and IVFRU in Herpes Simplex Virus Type-1 Thymidine Kinase (HSV1-tk) Gene Transduced Morris Hepatoma Cell Line (단순 헤르페스 제 1형 티미딘 키나제 유전자 이입 간암세포주에서 방사표지 IVDU와 IVFRU의 섭취 평가)

  • Lee, Tae-Sup;Choi, Tae-Hyun;Ahn, Soon-Hyuk;Woo, Kwang-Sun;Jeong, Wee-Sup;Kwon, Hee-Chung;Awh, Ok-Doo;Choi, Chang-Woon;Lim, Sang-Moo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.1
    • /
    • pp.62-73
    • /
    • 2004
  • Purpose: The herpes simplex virus type 1 thymidine kinase gene(HSV1-tk) is an attractive candidate as a reporter gene in noninvasive reporter gene monitoring system. The HSV1-tk gene was chosen as a reporter gene, because it has been extensively studied, and there are appropriate reporter probes, substrates of HSV1-tk gene product, to apply for HSV1-tk gene imaging. We used radiolabeled 5-iodovinyl-2'-deoxyuridine (IVDU) and 5-iodovinyl-2'-fluoro-2'-deoxyuridine (IVFRU) as reporter probes for HSV1-tk gene monitoring system. Materials and Methods: We prepared HSV1-tk gene transduced Morris hepatoma cell line using retroviral vector, MOLTEN containing HSV1-tk gene. And we confirmed the HSV1-tk gene expression by Northern blotting and Western blotting. We compared in vitro uptakes of radioiodinated IVDU and IVFRU to monitor HSV1-tk gene expression in Morris hepatoma cell line (MCA) and HSV1-tk gene tranduced MCA (MCA-tk) cells until 480 minutes. We also peformed correlation analysis between percentage of HSV1-tk gene tranduced MCA cell % (MCA-tk%) and uptakes of radiolabeled IVDU or IVFRU. Results: MCA-tk cell expressed HSV1-tk mRNA and HSV1-TK protein. Two compounds showed minimal uptake in MCA, but increased uptake was observed in MCA-tk. IVDU showed 4-fold higher accumulation than IVFRU at 480 min in MCA-tk (p<0.01). Both IVDU and IVFRU uptake were linearly correlated ($R^2>0.96$) with increasing MCA-tk%. Conclusion: The radiolabeld IVDU and IVFRU showed higher specific accumulation in retrovirally HSV1-tk gene transfected Morris hepatoma cell line. Both IVDU and IVFRU could be used as good substrates for evaluation of HSV1-tk gene expression.

Effect of Butyrate on Adenovirus-Mediated Herpes Simplex Virus Thymidine Kinase Gene Therapy (Butyrate가 Adenoviral Vector로 이입한 Herpes Simplex Virus Thymidine Kinase 유전자치료에 미치는 영향)

  • Park, Jae-Yong;Kim, Jeong-Ran;Chang, Hee-Jin;Kim, Chang-Ho;Park, Jae-Ho;Jung, Tae-Hoon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.3
    • /
    • pp.587-595
    • /
    • 1998
  • Background: Recombinant adenovirus hold promise as vectors to carry therapeutic genes for several reasons: 1) they can infect both dividing and non-dividing cells; 2) they have the ability to directly transduce tissues in vivo; 3) they can easily be produced in high titer; and 4) they have an established record of safety as vaccination material. However, one of the major limitation in the use of adenoviruses is that transgene expression is quite short because adenovirusees insert their DNA genome episomally rather than by chromosomal integration, and an immune response against the virus destroys cells expressing the therapeutic gene. Since sodium butyrate has been reported to induce adenovirus-mediated gene expression, we hypothesized that treatment of tumor cells, transduced with herpes simples virus thymidine kinase(HSVtk) gene using adenoviral vector, with butyrate could augment the effect of gene therapy. Methods: We transduced HSVtk gene, driven by the cytomegalovirus promoter, into REN cell line(human mesothelioma cell line). Before proceeding with the comparison of HSVtk/ganciclovir mediated bystander killing, we evaluated the effect of butyrate on the growth of tumor cells in order to rule out a potential antitumor effect of butyrate alone, and also on expression of HSVtk gene by Western blot analysis. Then we determined the effects of butyrate on bystander-mediated cell killing in vitro. Results: There was no inhibition of growth of cells exposed to butyrate for 24 hours at a concentration of 1.5mM/L. Toxic effects were seen when the concentration of butyrate was greater than 2.0mM/L. Gene expression was more stable and bystander effect was augmented by butyrate treatment of a concentration of 1.5mM/L. Conclusion: These results provide evidence that butyrate can augment the efficiency of cell killing with HSVtk/GCV system by inducing transgene expression and may thus by a promising new approach to improve responses in gene therapy using adenoviral vectors.

  • PDF

Combined Effect of Ganciclovir and Vidarabine on the Replication, DNA Synthesis, and Gene Expression of Acyclovir-resistant Herpes Simplex Virus (Acyclovir저항성 Herpes Simplex Virus의 복제, DNA합성 및 형질 발현에 미치는 Ganciclovir 및 Vidarabine의 병용효과에 관한 연구)

  • Yang, Young-Tai;Cheong, Dong-Kyun;Mori, Masakazu
    • The Korean Journal of Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.115-134
    • /
    • 1989
  • Combined effects of ganciclovir (GCV) and vidarabine (ara-A) on the replication, DNA synthesis, and gene expression of wild type-1 herpes simplex virus (HSV-1) and three acyclovir (ACV)-resistant HSV-1 mutants were studied. These mutants include a virus expressing no thymidine kinase $(ACV^r)$, a virus expressing thymidine kinase with altered substrate specificity $(IUdR^r)$, and a mutant expressing altered DNA polymerase $(PAA^r5)$. GCV, an agent activated by herpesvirus specific thymidine kinase, showed potent antiviral activity against the wild type HSV-1(KOS) and DNA polymerase mutant $(PAA^r5)$. The ACV-resistant mutants with thymidine kinase gene $(ACV^r\;and\;IUdR^r)$ were resistant to GCV. All tested wild type HSV-1 or ACV-resistant HSV-1 mutants did not display resistance to vidarabine (are-A). Combined GCV and ara-A showed potentiating synergistic antiviral activity against wild type KOS and $PAA^r5$, and showed subadditive combnined ativiral activity against thymidine kinase mutants. Combined GCV and ara-A more significantly inhibited the viral DNA synthesis in wild type KOS and $PAA^r5-infected$ cells to a greater extent than either agent alone, but the synergism was not determined in $ACV^r$ or $IUdR^r-infected$ cells. These data clearly indicate that combined GCV and ara-A therapy might be useful for the treatment of infections caused by wild type HSV-1 or ACV-resistant HSV-1 with DNA polymerase mutation. ACV-resistant viruses with the mutation in thymidine kinase gene are also, resistant to GCV, but susecptible to ara-A, indicating that ara-A would the drug of choice for the treatment of ACV-resistant HSV-1 which does not express thymidine kinase or expresses thymidine kinase with altered substrate specificity. While the synthesis of viral ${\alpha}-proteins$ of wild type HSV-1 was not affected by ACV, GCV, ara-A, or combined GCV and ara-A, the synthesis of ${\beta}-proteins$ was slightly but significantly increased at the later stage of viral infection by the antiviral agents. The synthesis of ${\gamma}-proteins$ of wild type HSV- 1 was significantly inhibited by ACV, GCV, ara-A, and combined GCV and ara-A. Combined GCV $(5-{\mu}M)$ and ara-A $(100-{\mu}M)$ also significantly altered the expression of viral ${\beta}-and$ ${\gamma}-proteins$, of which efffct was similar to that of GCV $(10-{\mu}M)$ alone. Although ACV at the concentration of $10-{\mu}M$ did not alter the expression of ${\alpha}-$, ${\beta}-$, and ${\gamma}-proteins$ of ACV-resistant $PAA^r5$, GCV and ara-A significantly alter the epression of ${\beta}-and$ ${\gamma}-proteins$, not ${\alpha}-protein$, as same manner as they altered the expression of those proteins in cells inffcted with wild type HSV-1. Combined GCV $(5-{\mu}M)$ and ara-A $(100-{\mu}M)$ altered the expression ${\beta}-and$ ${\gamma}-proteins$ in $PAA^r5$ infected cells, and the effect of combined regimen was comparable of that of GCV $(10-{\mu}M)$. These data indicate that the alteration in the expression of ${\beta}-and$ ${\gamma}-proteins$ in wild type HSV-1 or $PAA^r5$ infected cells could be more significantly affected by combined GCV and are-A than individual GCV or ara-A. In view of the fact that (a) viral ${\alpha}-$, ${\beta}-$, and ${\gamma}-proteins$ are synthesized in a cascade manner; (b) ${\beta}-proteins$ are essential for the synthesis of viral DNA; (c) the synthesis of ${\beta}-proteins$ are inhibited by ${\gamma}-proteins$; and (d) most ${\gamma}-proteins$ are made from the newly synthesized progeny virus, it is suggested that GCV and ara-A, alone or in combination, primarily inhibit the synthesis of viral DNA, and by doing so might exhibit their antiherpetic activity. The alteration in viral protein synthesis in the presence of tested antiviral agents could result from the alteration in viral DNA synthesis. From the present study, it can be concluded that (a) combined GCV and ara-A therapy would be beneficial for the control of inffctions caused by wild type HSV-1 or ACV-resistant DNA polymerase mutants; (b) the combined synergistic activity of GCV and ara-A is due to further decrease in the viral DNA by the combined regimen; (c) ara-A is the drug of choice for the infection caused by ACV-resistant HSV-1 with thymidine kinase mutation; and (d) the alteration in viral protein synthesis by GCV and ars-A, alone or in combination, is mostly due to the decreased synthesis of viral DAN.

  • PDF

Effect of Immune System on Retrovirus-Mediated Herpes Simplex Virus Thymidine Kinase Gene Therapy (면역체계가 Retroviral Vector로 이입한 Herpes Simplex Virus Thymidine Kinase 유전자치료에 미치는 영향)

  • Park, Jae-Yong;Joo, So-Young;Chang, Hee-Jin;Son, Ji-Woong;Kim, Kwan-Young;Kim, Keong-Seok;Kim, Chang-Ho;Park, Jae-Ho;Lee, Jong-Ki;Jung, Tae-Hoon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.2
    • /
    • pp.229-240
    • /
    • 1999
  • Background: The impact of the immune response on cancer gene therapy using viral vectors to deliver a "suicide gene" is currently unclear. A vigrous immune response targeted at viral proteins or transgene may enhance the efficacy of tumor destruction and even augment responses to tumor antigens. These responses may involve the release of cytokines and stimulation of tumor specific cytotoxic T-lymphocytes that enhance therapeutic efficacy. On the other hand, a vigorous rapid cellular immune response may destroy cells expressing the therapeutic gene and attenuate the response to therapy. Furthermore, development of neutralizing antibody responses may prevent readministration of virus, a potentially significant limitation. Evaluating the significance of these limitations in animal models and developing solutions are therefore of obvious importance. Methods: After retroviral transduction of mouse mesothelioma cell line(AB12) with Herpes Simplex Virus thymidine kinase (HSVtk) gene in vitro, subcutaneous flank tumors were established. To study the effect of intact immune system on efficacy of tumor erradication, the ability of the HSVtk/ganciclovir system to inhibit tumor growth was compared among normal Balb/c mice, immunodeficient Balb/c-nude and SCID mice, and Balb/c mice immunosuppressed with cyclosporin. Results: Ganciclovir treatment resulted in greater inhibition of tumor growth in Balb/c mice compared with immunodeficient Balb/c-nude mice and SCID mice(in immunodeficient mice, there were no growth inhibition by ganciclovir treatment). Ganciclovir treatment resulted in greater inhibition of tumor growth in noncyclosporin (CSA) treated Balb/c mice compared with CSA treated Balb/c mice. On day 8, mean ganciclovir-treated tumor volume were 65% of control tumor volume in Balb/c mice versus 77% control tumor volume in CSA-treated Balb/c mice. This effect was still evident during therapy (day 11 and 13). On day 13, non-CSA treated tumor volume was 35% of control tumor volume versus 60% of control tumor volume in CSA treated Balb/c mice. Duration of expression of HSVtk was not affected by the immunosuppression with CSA. Conclusion: These results indicate that the immune responses against retrovirally transduced cells enhance the efficacy of the HSVtk/ganciclovir system. These findings have important implications for clinical trials using currently available retrovirus vectors as well as for future vector design.

  • PDF

Effect of retinoic acid on the bystander effect in gene therapy using the Herpes Simplex Virus thymidine kinase (Herpes Simplex Virus thymidine kinase gene을 이용한 유전자 치료에서 retinoic acid가 bystander effect에 미치는 영향)

  • Park, Jae Yong;Kim, Chang Ho;Jung, Tae Hoon;Albelda, Steven M.
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.1
    • /
    • pp.162-174
    • /
    • 1997
  • Background : Metabolic cooperation via gap junctional intercellular communication (GJIC) is an important mechanism of the bystander effect in gene therapy using the Herpes Simplex Virus thymidine kinase/ganciclovir (HSVtk) "prodrug" system. Since retinoids have been reported to increase GJIC by induction of connexin 43 expression, we hyporthesized that treatment of tumor cells with retinoic acid could augment the bystander effect of the HSVtk/GCV system and result in improved tumor cell killing by enhancing GJIC. Methods : We transferred HSVtk gene to SKHep-J cell line that does not express connexin43, and also transferred the gene to human and murine mesothelioma cell lines that express connexin43. We verified that retinoic acid enhanced GJIC utilizing a functional double-dye transfer study and evaluated the effects of retinoic acid on the growth rate of tumor cells. We then tested the effects of retinoic acid on bystander-mediated cell killing. Results : Addition of all-trans retinoic acid (RA) increased GJIC in cell lines expressing connexin 43 and was asspciated with more efficient in vitro bystander killing in cells transduced with HSVtk via adenoviral and retroviral vectors. In contrast, there was no increase in the efficiency of the bystander effect after exposure to RA in a cell line which had no delectable connexin 43. Conclusion : These results provide evidence that retinoids can augment the efficiency of cell killing with the HSVtk/GCV system by enhancing bystander effect and may thus be a promising new approach to improve responses in gene therapy utilizing the HSVtk system to treat tumors.

  • PDF

Tumor targeted gene therapy (종양 표적 유전자 치료)

  • Kang, Joo-Hyun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.5
    • /
    • pp.237-242
    • /
    • 2006
  • Knowledge of molecular mechanisms governing malignant transformation brings new opportunities for therapeutic intervention against cancer using novel approaches. One of them is gene therapy based on the transfer of genetic material to an organism with the aim of correcting a disease. The application of gene therapy to the cancer treatment has led to the development of new experimental approaches such as suicidal gene therapy, inhibition of oncogenes and restoration of tumor-suppressor genes. Suicidal gene therapy is based on the expression in tumor cells of a gene encoding an enzyme that converts a prodrug into a toxic product. Representative suicidal genes are Herpes simplex virus type 1 thymidine kinase (HSV1-tk) and cytosine deaminase (CD). Especially, physicians and scientists of nuclear medicine field take an interest In suicidal gene therapy because they can monitor the location and magnitude, and duration of expression of HSV1-tk and CD by PET scanner.

Antitumor Effect of an Adenoviral Cytosine Deaminase/Thymidine Kinase Fusion Gene in C6 Glioma Cells (아데노 바이러스 Cytosine Deaminase/Thymidine Kinase 융합 유전자의 항 종양효과)

  • Kim, Young Woo;Choi, Jae Young;Chang, Jin Woo;Park, Yong Gou;Chung, Sang Sup
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.sup1
    • /
    • pp.13-19
    • /
    • 2001
  • Objective : We investigated the feasibility of a double suicide gene/prodrug therapy, involving direct introduction of the herpes simplex virus Type 1 thymidine kinase(TK) gene and the Escherichia coli cytosine deaminase(CD) gene, via a recombinant adenoviral vector and ganciclovir(GCV) and/or 5-fluorocytosine(5-FC) treatment, in C6 glioma cells. Methods : Efficient gene transfer and transduction of C6 glioma cells via a recombinant adenovirus were evaluated by infecting cells with adenovirus bearing the ${\beta}$-galactosidase gene and then staining cells with 5-bromo-4-chloro-3-indolyl-13-D-galactoside. CD/TK expression in cells infected with adenovirus bearing the CD/TK gene(ad-CD/TK) was examined by immunoblotting analysis. For in vitro cytotoxicity experiments, the cells were infected with ad-CD/TK or ad-${\Delta}E1$(as a control). After addition of a variety of concentrations of GCV and 5-FU, either separately or in combination, cell viability was determined by staining the cells with crystal violet solution 6 days after infection. Result : C6 glioma cells were efficiently transduced with recombinant adenoviral vector at multiplicities of infection of 200 or more. In vitro cytotoxicity of GCV and/or 5-FC, either alone or in combination, was exclusively observed in the cells transduced with ad-CD/TK. Obvious cytotoxicity(>50% inhibition) was observed in the presence of 5-FC at concentrations greater than 30ug/ml or GCV at concentrations greater than 0.3ug/ml at a multiplicity of infection of 100. Additionally, cytotoxicity in the presence of both GCV and 5-FC was greater than that after sinlge-prodrug treatments, indicating additive effects of the prodrug treatments. Conclusion : The administration of a double-suicide gene/prodrug therapy might have great potential in the treatment of brain tumors.

  • PDF

Herpes Simplex Virus Thymidine Kinase Gene Therapy Delivered by Retroviral or Adenoviral Vector in Mouse Model of Lewis Lung Carcinoma (Lewis 폐암 마우스 모델에서 Retroviral Vector나 Adenoviral Vector로 이입된 Herpes Simplex Virus Thymidine Kinase 유전자치료)

  • Kwon, Hee-Chung;Jeong, Jae-Min;Kim, Jung-Hyeon;Ham, Yong-Ho;Seo, Ji-Sook;Lee, Ki-Ho;Kim, Chang-Min;Lee, Han-Soo;Lee, Choon-Taek
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.3
    • /
    • pp.298-309
    • /
    • 2000
  • Background : The antitumor effects of herpes simplex virus thymidine kinase (HSV-tk) and ganciclovir (GCV) strategies for cancer gene therapy have a the following advantages : 1) a direct cytotoxicity to HSV-tk modified cancer cells by GCV 2) a cell death by the local transfer of toxic metabolites from the HSV-tk modified cells to nearby unmodified tumor cells (bystander effect), and 3) in vivo bystander effect such as antitumor-immunity. Retroviral and adenoviral sequences can silence transgene expression in cells and mice. In this study, we investigated the above described advantages of HSV-tk/GCV strategy in Lewis lung cell and mouse lung cancer model using retroviral vector and adenoviral vector. Also, we observed whether the expression of a silenced gene can be reactivated by treating cells with butyrate. Methods : Retrovirus-HSV-tk and adenovirus-HSV-tk vectors were used for the transduction of Lewis lung carcinoma (LLC) cells. The change of HSV-tk expression by butyrate was measured by Western blol The antitumor activities containing bystander effect were observed in vivo (by MTT assay) and in vivo tumor models of various combinations of LLC and LLC-tk. Results : 1. Butyrate induced the enhancement of HSV-tk expression from adenovirally transduced cells but not from retrovirally transduced cells. 2. Both retrovirus-HSV-tk and adenovirus-HSV-tk vectors with GCV treatment were effective for killing of tumor cell in vitro and suppression of LLC tumorigenicity. Bystander effect was responsible for killing of mixture of LLC-tk and LLC in vitro and in vivo-tumorigenicity model. Conclusion : Butyrate could augment adenovirus-mediated HSV -tk gene expression. Cancer gene therapy with HSV-tk suicide gene by retroviral and adenoviral vector seems to be an effective approach for lung cancer therapy.

  • PDF