• 제목/요약/키워드: Hereditary neuropathy with liability to pressure palsies (HNPP)

검색결과 3건 처리시간 0.019초

Rapid Diagnosis of CMT1A Duplications and HNPP Deletions by Multiplex Microsatellite PCR

  • Choi, Byung-Ok;Kim, Joonki;Lee, Kyung Lyong;Yu, Jin Seok;Hwang, Jung Hee;Chung, Ki Wha
    • Molecules and Cells
    • /
    • 제23권1호
    • /
    • pp.39-48
    • /
    • 2007
  • Charcot-Marie-Tooth (CMT) disease and hereditary neuropathy with liability to pressure palsies (HNPP) are frequent forms of genetically heterogeneous peripheral neuropathies. Reciprocal unequal crossover between flanking CMT1A-REPs on chromosome 17p11.2-p12 is a major cause of CMT type 1A (CMT1A) and HNPP. The importance of a sensitive and rapid method for identifying the CMT1A duplication and HNPP deletion is being emphasized. In the present study, we established a molecular diagnostic method for the CMT1A duplication and HNPP deletion based on hexaplex PCR of 6 microsatellite markers (D17S921, D17S9B, D17S9A, D17S918, D17S4A and D17S2230). The method is highly time-, cost- and sample-saving because the six markers are amplified by a single PCR reaction and resolved with a single capillary in 3 h. Several statistical and forensic estimates indicated that most of these markers are likely to be useful for diagnosing the peripheral neuropathies. Reproducibility, as determined by concordance between independent tests, was estimated to be 100%. The likelihood that genotypes of all six markers are homozygous in randomly selected individuals was calculated to be $1.6{\times}10^{-4}$, which indicates that the statistical error rate for this diagnosis of HNPP deletion is only 0.016%.

염색체 17p11.2 유전자 결손을 동반한 유전성 압박마비 편향 신경병증의 임상적, 전기생리학적 특성 (Clinical and Electrophysiological Features of HNPP Patients with 17p11.2 Deletion)

  • 홍윤호;김만호;성정준;김성훈;이광우
    • Annals of Clinical Neurophysiology
    • /
    • 제4권2호
    • /
    • pp.125-132
    • /
    • 2002
  • Objectives : Although the diagnosis of hereditary neuropathy with liability to pressure palsies (HNPP) is important for correct prognostic evaluation and genetic counseling, the diagnosis is frequently missed or delayed. Our main aim on undertaking this study was to characterize the electrodiagnostic features of HNPP. Material and Methods : Clinical, electrophysiologic and molecular studies were performed on Korean HNPP patients with 17p11.2 deletion. The results of electrophysiologic studies were compared with those of Charcot-Marie-Tooth disease type 1A (CMT1A) patients carrying 17p11.2 duplication. Results : Eight HNPP (50 motor, 39 sensory nerves) and six CMT1A (28 motor, 16 sensory nerves) patients were included. The slowing of sensory conduction in nearly all nerves and the distal accentuation of motor conduction abnormalities are the main features of background polyneuropathy in HNPP. In contrast to CMT1A, where severity of nerve conduction slowing was not different among nerve groups, HNPP sensory nerve conduction was more slowed in the median and ulnar nerves than in the sural nerve (p<0.01), and DML was more prolonged in the median nerve than in the other motor nerves (p<0.01). TLIs were significantly lower in HNPP than in the normal control and CMT1A patients for the median and ulnar nerves (p<0.01), and were also significantly reduced for the peroneal nerve (p<0.05) compared with those of the normal controls. Conclusion : The distribution and severity of the background electrophysiologic abnormalities are closely related to the topography of common entrapment or compression sites, which suggests the possible pathogenetic role of subclinical pressure injury at these sites in the development of the distinct background polyneuropathy in HNPP.

  • PDF

샤르코-마리-투스 질환의 진단 및 치료 (Diagnosis and treatment in Charcot-Marie-Tooth disease)

  • 김상범;박기덕;최병옥
    • Annals of Clinical Neurophysiology
    • /
    • 제7권2호
    • /
    • pp.65-74
    • /
    • 2005
  • Charcot-Marie-Tooth (CMT) disease was described by Charcot and Marie in France and, independently, by Tooth in England in 1886. CMT is the most common form of inherited motor and sensory neuropathy, and is a genetically heterogeneous disorder of the peripheral nervous system. Therefore, many genes have been identified as CMT-causative genes. Traditionally, subclassification of CMT have been divided into autosomal dominant inherited demyelinating (CMT1) and axonal (CMT2) neuropathies, X-linked neuropathy (CMTX), and autosomal recessive inherited neuropathy (CMT4). Recently, intermediate type (CMT-Int) with NCVs between CMT1 and CMT2 is considered as a CMT type. There are several related peripheral neuropathies, such as $D{\acute{e}}j{\acute{e}}rine$-Sottas neuropathy (DSN), congenital hypomyelination (CH), hereditary neuropathy with liability to pressure palsies (HNPP) and giant axonal neuropathy (GAN). Great advances have been made in understanding the molecular basis of CMT, and 17 distinct genetic causes of CMT have been identified. The number of newly discovered mutations and identified genetic loci is rapidly increasing, and this expanding list has proved challenging for physicians trying to keep up with the field. Identifying the genetic cause of inherited neuropathies is often important to determine at risk family members as well as diagnose the patient. In addition, the encouraging studies have been published on rational potential therapies for the CMT1A. Now, we develop a model of how the various genes may interact in the pathogenesis of CMT disorder.

  • PDF