• 제목/요약/키워드: Herbaspirillum sp.

검색결과 4건 처리시간 0.016초

토양에서 분리된 Herbaspirillum sp. meg3의 유전체 염기서열 분석 (Complete genome sequence of Herbaspirillum sp. meg3 isolated from soil)

  • 김예은;도경탁;운노 타쯔야;박수제
    • 미생물학회지
    • /
    • 제53권4호
    • /
    • pp.326-328
    • /
    • 2017
  • Betaproteobacteria에 속하는 Herbaspirillum sp. meg3을 제주도 토양으로부터 분리하였다. 본 연구에서는 대략 5.47 Mb의 크기와 57.1%의 평균 G + C 함량을 가진 meg3 균주의 완전한 유전체를 보고한다. 유전체는 4,816개의 코딩 서열, 9개의 리보솜 RNA 및 51개의 전사 RNA 유전자가 존재하며, 두 개의 불완전한 프로파지 영역이 발견되었다. 또한 유전체 분석 결과는 meg3 균주가 방향족 화합물에 대한 분해능을 가지고 있음을 제시하고 있다.

Optimization of As Bioleaching by Herbaspirillum sp. GW103 Coupled with Coconut Oil Cake

  • Govarthanan, Muthusamy;Praburaman, Loganathan;Kim, Jin-Won;Oh, Sae-Gang;Kamala-Kannan, Seralathan;Oh, Byung-Taek
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권2호
    • /
    • pp.47-54
    • /
    • 2015
  • The objective of this study was to optimize the experimental conditions for bioleaching of arsenic (As) using Herbaspirillum sp. GW103 and to understand the interaction between bacteria and As during bioleaching. Five variables, temperature, time, CaCO3, coconut oil cake, and shaking rate, were optimized using response surface methodology (RSM) based Box-Behnken design (BBD). Maximum (73.2%) bioleaching of As was observed at 30℃, 60 h incubation, 1.75% CaCO3, 3% coconut oil cake, and 140 rpm. Sequential extraction of bioleached soil revealed that the isolate Herbaspirillum sp. GW103 significantly reduced 28.6% of water soluble fraction and increased 38.8% of the carbonate fraction. The results of the study indicate that the diazotrophic bacteria Herbaspirillum sp. could be used for bioleaching As from mine soil.

Characterization of Plant Growth-Promoting Traits of Free-Living Diazotrophic Bacteria and Their Inoculation Effects on Growth and Nitrogen Uptake of Crop Plants

  • Islam, Md. Rashedu;Madhaiyan, M.;Boruah, Hari P.Deka;Yim, Woo-Jong;Lee, Gill-Seung;Saravanan, V.S.;Fu, Qingling;Hu, Hongqing;Sa, Tongmin
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권10호
    • /
    • pp.1213-1222
    • /
    • 2009
  • The search for diverse plant growth-promoting (PGP) diazotrophic bacteria is gaining momentum as efforts are made to exploit them as biofertilizers for various economically important crops. In the present study, 17 diazotrophic strains belonging to eight different genera isolated from rice paddy fields were screened for multiple PGP traits and evaluated for their inoculation effects on canola and rice plants. All of the strains tested positive for 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity and production of indole 3-acetic acid (IAA) and ammonia ($NH_3$). Additionally, four of the strains were able to solubilize phosphorus (P), five tested positive for zinc (Zn) solubilization and sulfur (S) oxidation, and eight strains produced siderophores. Based on the presence of multiple PGP traits, 10 strains were selected for inoculation studies. Treatment with Herbaspirillum sp. RFNB26 resulted in maximum root length (54.3%), seedling vigor, and dry biomass in canola, whereas Paenibacillus sp. RFNB4 exhibited the lowest activity under gnotobiotic conditions. However, under pot culture conditions, Paenibacillus sp. RFNB4 significantly increased plant height and dry biomass production by 42.3% and 29.5%, respectively. Canola plants and rhizosphere soils inoculated with Bacillus sp. RFNB6 exhibited significantly higher nitrogenase activity. In greenhouse experiments, Serratia sp. RFNB18 increased rice plant height by 35.1%, Xanthomonas sp. RFNB24 enhanced biomass production by 84.6%, and rice rhizosphere soils inoculated with Herbaspirillum sp. RFNB26 exhibited the highest nitrogenase activity. Our findings indicate that most of the selected strains possess multiple PGP properties that significantly improve the growth parameters of the two plants when tested under controlled conditions.

차량 내 미생물에 의해 생성되는 악취유발 화학물질의 분석 (Determination of Malodor-causing Chemicals Produced by Microorganisms Inside Automobile)

  • 박상준;김의용
    • KSBB Journal
    • /
    • 제29권2호
    • /
    • pp.118-123
    • /
    • 2014
  • It was confirmed that malodor connected with an air-conditioner in an automobile is caused by microbial volatile organic compounds (MVOCs) produced by microorganisms getting into an air-conditioner when it is operating. Chemicals such as hydrogen sulfide, dimethyl sulfide, nbutyric acid, n-valeric acid, iso-valeric acid, n-octanol and toluene were detected above the odor threshold inside the automobile. The characteristics of a funky odor in the air blown into the automobile were due to detected sulfur compounds (hydrogen sulfide and dimethyl sulfide). Dimethyl sulfide was produced by microorganisms such as Aspergillus versicolor, Methylobacterium aquaticum, Herbaspirillum sp. and Acidovorax sp. In addition, the characteristics of a sour odor in the air blown into the automobile were due to detected organic acids (n-butyric acid, n-valeric acid and iso-valeric acid). N-valeric acid and iso-valeric acid were generated from Aspergillus versicolor, while iso-valeric acid was produced by Methylobacterium aquaticum. In addition, the odor intensity of the air blown into the automobile was affected by the concentration of detected sulfur compounds and organic acids. On the other hand, it is estimated that chemicals such as hydrogen sulfide, n-octanol and n-butyric acid detected in the air blown into the automobile were produced by non-identified species of microorganisms.