• Title/Summary/Keyword: Hepatotoxic chemicals

Search Result 9, Processing Time 0.029 seconds

PROTECTIVE ACTION OF N-ACETYLCYSTEINE AGAINST HEPATOTOXIC AGENTS IN ISOLATED RAT LIVER CELLS

  • Park, Soo-Hee;Dong, Mi-Sook;Kang, Dong-Chul;Lee, Ki-Wan;Cha, Young-Nam
    • Toxicological Research
    • /
    • v.3 no.2
    • /
    • pp.129-141
    • /
    • 1987
  • Hepatocytes isolated from rats which have been pretreated with phenobarbital (80 mg/kg for 3 days), were able to take up N-acetylcysteine from surrounding medium and were able to synthesize the reduced glutathione ($GSH^{\ast}-3$) intracellularly. The N-acetylcysteine is quickly deacetylated after the uptake and increases the pool size of cysteine, which was very low initially (5 nmol/$10^6$ cells). From this increased intracellular cysteine pool, GSH was synthesized. Freshly isolated rat hepatocytes contained a high level of GSH (30 nmol/$10^6$ cells), but upon incubation with the diethylmaleate, it was markedly decreased (10 nmol/$10^6$ cells). The hepatocytes with depleted GSH have lost viability upon incubations with acetaminophen (5mM) and paraquat (2 mM). However, when the N-acetylcysteine (1 mM) was added to this incubation condition, these chemical induced hepatocellular necrosis were prevented for longer durations. This N-acetylcysteine dependent protective effect against the hepatotoxic chemicals was lost by adding methionine sulfoximine (10 mM), an inhibitor of GSH biosynthesis. Both the carbontetrachloride (5 mM) and chioroform (5 mM) added to the incubation medium caused rapid losses of GSH and cell viability, even without the prior depletion of cellular GSH. However, again, if the 1mM N-acetylcysteine was supplemented, the rates of losses of GSH and cell viability were retarded in both cases. Even though large amounts of the added N-acetylcysteine was present in the cell, N-acetylcysteine conjugate of acetaminophen was not formed. Instead, only large amounts of GSH conjugate of the drug was produced. Thus, it is concluded that the added N-acetylcysteine is taken up and utilized for resynthesis of GSH. In turn, this resynthesized GSH contributes to the protection against cytotoxicity inducible with hepatotoxic drugs.

  • PDF

Acute Effects of 2-Bromopropane and 1,2-Dibromopropane on Hepatotoxic and Immunotoxic Parameters in Female BALB/c Mice

  • Kim, Nam-Hee;Hyun, Sun-Hee;Jin, Chun-Hua;Lee, Sang-Kyu;Lee, Dong-Wook;Jean, Tae-Won;Park, Chang-Bon;Lee, Eung-Seok;Chae, Whigun;Jeong, Tae-Cheon
    • Archives of Pharmacal Research
    • /
    • v.26 no.11
    • /
    • pp.943-950
    • /
    • 2003
  • In the present studies, the acute toxic effects of 2-bromopropane (2-BP) and its analog, 1,2-dibromopropane (1,2-DBP), were investigated in female BALB/c mice. The mice were treated orally with either 2-BP at 2000 and 4000 mg/kg or 1,2-DBP at 300 and 600 mg/kg. Four days before necropsy, the mice were immunized intraperitoneally with sheep red blood cells (SRBCs). 1,2-DBP reduced the weights of the spleen and thymus weights and decreased the number of splenic cells. In addition, treatment with 1,2-DBP suppressed the antibody response to SRBCs. Meanwhile, only the antibody response was significantly suppressed by treatment with 2-BP. In the subsequent studies, the time course effects of 2-BP and 1 ,2-DBP on the hepatotoxic parameters were compared in female BALB/c mice. When mice were treated orally with either one of these chemicals for 6, 12, 24 and 48 h, the activities of serum alanine aminotransferase and aspartate aminotransferase elevated significantly only with 1,2-DBP 24 h after the treatment. The hepatic content of glutathione was reduced by 1,2-DBP. Meanwhile, these parameters were increased by 2-BP. The present results suggest that 1,2-DBP in the Solvent 5200 also contributes to the immnunotoxicity, although 2-BP is a major component.

A Study on the Prevalence and Risk Factors of Liver Dysfunction among the Workers in Chemical Factories (화학공장 근로자들의 간기능 이상 유병률 및 위험인자에 관한 연구)

  • Cheong, Hae-Kwan;Kim, Joung-Soon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.30 no.1 s.56
    • /
    • pp.103-128
    • /
    • 1997
  • The object of this study is to evaluate the possibility of chemical-induced liver disorder among workers exposed to various chemicals and to classify the the liver function abnormalities by causes and to analyse the risk factors for each liver disorders. A cross-sectional study including questionnaire survey, physical examination, laboratory tests and ultrasonography of liver was conducted on 1,126 workers, 459 workers in a coal chemical plant(company A) and 667 workers in an insulation material manufacturing factory(company B). An industrial hygienist reviewed the chemicals used in both companies and evaluated the work environments to classify the workers by chemical exposure semiquantitatively. The results are as follows: 1. Of 459 workers in company A, 83 workers(18.1%) are classified as nonexposed, group 163(35,5%) as short-term exposure group, 155(33.8%) as intermediately exposed group and 58(12.6%) as long-term exposed group bared on the mean daily exposure to hepatotoxic chemicals evaluated by an industrial hygienist. Of 667 workers in company B, 484(72.6%) workers were classified as nonexposed and 183(35.5%) as exposed group. 2. Workers with SGOT level higher than 40 IU/l were (10.0%) in company A and 77(11.5%) in company 3, and those with SGPT level higher than 35 IU/l were 118(25.7%) in company A and 198(29.7%) in company B. The differences were not significant between companies and between exposure groups(p>0.05). Workers with $\gamma-GT$ level higher than 62 IU/l were 29(6.3%) in company A and 77(11.5%) in company B (p<0.01). The difference between exposure groups was not significant(p>0.05) within companies. Workers with liver function abnormalities(defined as SGOT higher than 40 IU/l or SGPT higher than 35 IU/l) were 338(30.0%) among 1,126 workers. Of 338 workers with live. function abnormalities 139(12.3%) had fatty liver by ultrasonography, 79(7.0%) had alcoholic liver(defined as workers with liver function abnormalities with weekly alcohol consumption greater than 280 g for more than 5 years), 54(4.8%) had hepatitis B, 12(1.1%) had hepatitis C and the other 114(33.7%) was not otherwise classified. Prevalences of alcoholic liver and fatty liver were significantly lower in company A(prevalence ratio 0.24 for alcoholic liver, p<0.001, prevalence ratio 0.76 for fatty liver, p<0.05) but prevalences of liver disorders between exposure groups within companies were not significant(p>0.05). 3. Summary prevalence ratios(SPR) of live. function abnormalities, fatty live. and other liver disorders, adjusted by age and company were not significantly higher in exposed group in any chemicals(p>0.05) but in some chemicals, SPRs were significantly lower. 4. On simple analysis of risk factors for liver function abnormalities, prevalence odds ratio(POR) of those with age between 30 and 39 was 1.54(p<0.01) and those with age ever 40 was 1.51(p<0.01). POR of those with histories of liver disorders and general anesthesia was 1.77(p<0.001) and 4.02 for those with overweight and 6.23 for those with obesity, defined by body mass index(p<0.001). 5. On logistic regression analysis, risk factors of liver function abnormality were fatty liver(POR 2.92 for grade 1, 12.15 for grade 2), presence of hepatitis B surface antigen(POR 3.62) and obesity(POR 5.38 for overweight and 16.52 for obesity). Presence of hepatitis B surface antigen(POR 0.18) was the only preventive facto. of fatty live. Company(POR 0.30) and obesity(POR 2.49 for overweight, 4.52 for obesity) were related to the alcoholic live. Obesity(POR 2.94 for overweight) was the only significant risk factor of hepatitis B and there was no significant risk factor for liver function abnormality not otherwise classified. It is concluded that the evidence of liver disorder related with chemical exposure is not evident in these factories. It is also postulated that fatty liver and alcoholic liver is most common causes of liver function abnormalities among workers and effort for weight control and improvement of life style should be done.

  • PDF

The Hepatotoxicity and the Effect of Antioxidative Vitamins by the Simultaneous Administration of Caffeine and Acetaminophen in vitro (Caffeine과 Acetaminophen으로 인한 간독성과 항산화성 비타민의 효과)

  • 노숙령;옥현이;이재관
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.6
    • /
    • pp.1173-1180
    • /
    • 1997
  • Hepatotoxicity of caffeine and acetaminophen was investigated in this study. Special attention was paid to the effect of vitamins on the reduction of hepatotoxicity caused by the chemicals. Rat hepaocytes isolated by two-step perfusion method were cultured in two differents methods-suspension, monolayer cultures-, and exposed to caffeine and/or acetaminophen for 24hrs. Caffeine or acetaminophen exhibited no significant hepatotoxicity in terms of intracellular glutathione(GSH) level and lipid peroxidation(MDA), but GSH level was significantly decreased after administrated acetaminophen, and the toxicity caused by the chemicals showed a dose-dependent manner. The synergistic effect of caffeine and acetaminophen was observed when both caffeine and acetaminophen were supplemented to culture medium. At the concentration 1mM, caffeine enhanced the intracellular GSH depletion and MDA formation by 63% and 64%, respectively, compared to single supplementation of 10mM acetaminophen in culture medium. This hepatotoxicity induced membrane integrity loss was observed by lightmicroscope on the simultaneous administration of caffeine and acetaminophen in monolayer cultured hepatocytes. Co-supplementation of vitamins with caffeine/acetaminophen to culture medium results in the protection of hepatocytes from hepatotoxic attach by caffeine/acetaminophen. Especially, vitamin E was superior to vitamin C and $\beta$-carotene from the standpoints of GSH depletion and MDA formation. From this results, it has been speculated that vitamin E may play a role of antioxidant scavenging radicals produced from acetaminophen. Taken all together, in vitro culture system like monolayer culture of hepatocytes may be a useful tool for the evaluation of hepatotoxicity or protection ability of food ingredients.

  • PDF

Correlation between Protein Methylation and Hepatotoxicity (단백질메칠화 반응과 간독성간의 상관관계)

  • 김재현;박창원;이주한;백윤기;문화회;홍성렬;이향우
    • Biomolecules & Therapeutics
    • /
    • v.2 no.1
    • /
    • pp.47-53
    • /
    • 1994
  • The methylation response as well as the level of methyl donor substance, 5-adenosyl-L-methionine (SAM) has been suggested to be related to hepatotoxicity including hepatocarcinogenesis. But direct correlation between protein methylation and hepatotoxicity has not been established to the present. To observe relationship between protein methylation and short-term hepatotoxicity induced by chemical substances, the activities of protein methylase I and II (PM I, PM II) were examined in cytosolic fraction of SD rat treated orally with acetaminophen(AA), $\alpha$-naphtyl-isothiocyanate (ANIT) and tetracycline (TC) that was known to produce necrosis, cholestasis and steatosis respectively. To evaluate the degree of hepatotoxicity induced by each chemicals, we observed the serum levels of indicative parameters and histopathological alteration. In AA treated group, the activities of PM I were increased at 6, 12 hours after administration, prior to the appearance of the hepatotoxicity by clinical parameters. It was suggested that the levels of PM I were related with the initial stage of hepatotoxic mechanism induced by AA. In ANIT treated group, though most of clinical parameters were significantly increased at 24, 48 hours after administration, the activity of PM I was not changed, indicating that ANIT induced hepatotoxicity was not coupled to protein methylation.

  • PDF

Peroxyl Radical Scavenging Capacity of the Flavonolignan Silybin, Ginkgo Biloba Extract EGb 761, American Green Tea and a Series of Germacranolides

  • Winston, Gary W.;Kim, Young Chul;Dugas, Alton J.;Castaneda-Acosta, Jose;Fischer, Nikolaus H.
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.271-280
    • /
    • 2001
  • We report on the applicability oj a method recently developed in our laboratory for measuring the antioxidant potential of isolated chemicals and extracts derived from natural products. Peroxyl radicals generated by thermal homolysis of 2,2'-azobis-amidinopropane (ABAP) oxidize $\alpha$-keto-${\gamma}$-methiolbutyric acid (KMBA) to ethylene, which is monitored by gas chromatography. Inhibition of ethylene formation in the presence of antioxidants that compete with KMBA for peroxyl radicals is the basis of the Total Oxyradical Scavenging Capacity Assay (TOSCA; Winston et al., 1998). Antioxidative activities of water-soluble extracts of American green tea, the anti-hepatotoxic flavonolignan from milk thistle (Silybum marianum) silybin, Ginkgo biloba extract EGb 761, and a series of naturally occuring sesquiterpene lactones (all ger-macranolides found in in fungi, liverworts, and plants) were studied. The specific TOSC value per $\mu$M silybin was 5.2, which is essentially comparable to that of Trolo $x^{ⓡ}$, a water-soluble vitamine E analog. Tea and Ginkgo extracts exhibited potent peroxyl radical scavenging capacity with values, respectively of =1700 and 1000 $\mu$mols Trolo $x^{ⓡ}$ equivalent per gram dry matter. The known anti-inflammatory activity of some germacranolides prompted study of their antioxidant capacity. None of the lactones exhibited antioxidant capacity toward peroxyl radicals comparable to Trolo $x^{ⓡ}$; costunilide, the most lipophilic, had a TOSC value = to glutathione. The potential role of peroxyl radicals in lipidperoxidation, other cellular damage, and var-ious disease states suggest a possible preventive role for silybin, green tea and Ginkgo biloba in oxidative stress caused by these free radical species.ecies.

  • PDF

Early Liver and Kidney Dysfunction Associated with Occupational Exposure to Sub-Threshold Limit Value Levels of Benzene, Toluene, and Xylenes in Unleaded Petrol

  • Neghab, Masoud;Hosseinzadeh, Kiamars;Hassanzadeh, Jafar
    • Safety and Health at Work
    • /
    • v.6 no.4
    • /
    • pp.312-316
    • /
    • 2015
  • Background: Unleaded petrol contains significant amounts of monocyclic aromatic hydrocarbons such as benzene, toluene, and xylenes (BTX). Toxic responses following occupational exposure to unleaded petrol have been evaluated only in limited studies. The main purpose of this study was to ascertain whether (or not) exposure to unleaded petrol, under normal working conditions, is associated with any hepatotoxic or nephrotoxic response. Methods: This was a cross-sectional study in which 200 employees of Shiraz petrol stations with current exposure to unleaded petrol, as well as 200 unexposed employees, were investigated. Atmospheric concentrations of BTX were measured using standard methods. Additionally, urine and fasting blood samples were taken from individuals for urinalysis and routine biochemical tests of kidney and liver function. Results: The geometric means of airborne concentrations of BTX were found to be $0.8mg\;m^{-3}$, $1.4mg\;m^{-3}$, and $2.8mg\;m^{-3}$, respectively. Additionally, means of direct bilirubin, alanine aminotransferase, aspartate aminotransferase, blood urea and plasma creatinine were significantly higher in exposed individuals than in unexposed employees. Conversely, serum albumin, total protein, and serum concentrations of calcium and sodium were significantly lower in petrol station workers than in their unexposed counterparts. Conclusion: The average exposure of petrol station workers to BTX did not exceed the current threshold limit values (TLVs) for these chemicals. However, evidence of subtle, subclinical and prepathologic early liver and kidney dysfunction was evident in exposed individuals.

Hepatic Tissue Changes by the 1,3-Dichloropropanol Inhalation in the Rat (1, 3-Dichloropropanol 흡입에 의한 랫드간의 조직변화에 관한 연구)

  • Kim Sung-Hwa;Park O-Sung;Lee Sung-Bae;Choi Jong-Yun;Kwon Hyo Jung;Son Sek-Woo;Park Il-Kwon;Lee Kyoung-Youl;Son Hwa-Young;Lee Mee-Young;Lee Guen-Jwa;Kim Hyeon-Young;Lee Kang-Yi
    • Toxicological Research
    • /
    • v.21 no.2
    • /
    • pp.141-150
    • /
    • 2005
  • 1,3-Dichloro-2-propanol (1,3-DCP) is known as chloride chemicals and causes severe hepatotoxic agent. The Ito cells and Kupffer's cells of the liver in the 5 old F344 Rats were exposed to 1,3-DCP gas chamber for 6 hours/ a day, 5 days/ a week, and 13 weeks, in the 0, 5, 20, 80 ppm, respectively. After then the body weights, liver weights, and relative liver weight to body weight were measured, and the hepatic tissues were prepared by the routine and Immunostain method, and observed by the LM, and EM. In the results, there were severe body weight decrease (p<0.05) in the 80 ppm of the male and female rats. The relative liver weights to the body weight were increased relate with exposed 1,3-DCP concentration (P<0.001). Inflammatory cells, infiltration was observed at the perivascular area in the 20 ppm exposed group, and bilirubin pigment infiltration, bile duct hyperplasia, inflammation hepatocytic necrosis, fibrosis were observed in the 80 ppm exposure group. In the 80 ppm exposure group, disarrangement of the endothelial cells, erythrocytes and hepatic cell fragment in the Disse space and numerous migration macrophages were observed in the necrotic area by EM observation. In the immunostained hepatic tissues positive stained ED1 cells were extremely increased (P<0.05) in central vein area, but ED2 was weakly positive immunostained in the 80 ppm exposed group. Immunostained desmin was observed in the Ito cell. It was no difference in the low and medium exposed group but it was typical increase in the necrotic area. In conclusion, These results suggest that NOAEL of 1,3-DCP may be 5 ppm in rats and the Immunostained of desmin, ED1 and ED2 positive cells activated in the inflammatory liver were related to the exposure volume and density. The increase of the Ito cells were related to the severe phagocytosis of the Kupffer's cells.

Hepatoprotective and Anticancer Activities of Allomyrina dichotoma Larvae (장수풍뎅이 유충의 간보호 효능 및 항암활성)

  • Lee, Ji-Eun;Jo, Da-Eun;Lee, An-Jung;Park, Hye-Kyung;Youn, Kumju;Yun, Eun-Young;Hwang, Jae-Sam;Jun, Mira;Kang, Byoung Heon
    • Journal of Life Science
    • /
    • v.25 no.3
    • /
    • pp.307-316
    • /
    • 2015
  • Beetle larvae have been used as a traditional medicine to treat various human liver diseases. To prove the liver protective function of Allomyrina dichotoma larvae (ADL), we induced liver damage by the intraperitoneal injection of a hepatotoxic reagent, diethylnitrosamine (DEN), to C3H/HeN male mice and orally administered freeze-dried ADL powder. ADL powder lessened DEN-induced hepatotoxicity considering the reduced signs of acute and chronic hepatotoxicities, such as the ALP level in the blood serum, TUNEL-positive hepatocytes, ductural reactions, steatotic hepatocytes, and collagen deposition of the Masson’s trichrome staining. In addition to hepatoprotection, the anti-cancer activity of ADL has been examined. The ADL powder was extracted with ethanol and then fractionated with hexane, ethyl acetate, and water by a solvent partition technique. The ethyl acetate fraction showed cytotoxicity to various cancer cells through induction of apoptosis and necrosis, as well as the perturbed metabolism of the cancer cell to trigger autophagy. Collectively, ADL contains bioactive substances that can protect hepatocytes from toxic chemicals and trigger cell death in cancer cells. Thus, further purification and analyses of ADL fractions could lead to the identification of novel bioactive compounds.