• Title/Summary/Keyword: Hepatocyte-specific contrast agent

Search Result 6, Processing Time 0.023 seconds

Supradiaphragmatic Liver Confirmed by a Hepatocyte-specific Contrast Agent (Gd-EOB-DTPA): A Case Report

  • Cho, Young Jong;Kim, Hyuk Jung;Bae, Young A;Jang, Suk Ki;Yeon, Jae Woo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.1
    • /
    • pp.52-55
    • /
    • 2015
  • Supradiaphragmatic liver is a rare condition. Establishing an accurate preoperative diagnosis is difficult. Operative exploration is necessary to differentiate this lesion from intrathoracic masses, such as a pleural based tumor, diaphragmatic tumor and peripheral lung tumor. However, with the aid of the hepatocyte-specific magnetic resonance imaging contrast agent, gadoxetic acid (Gd-EOB-DTPA), functional hepatocytes in the lesion can be identified in the hepatobiliary phase, potentially allowing an accurate and non-invasive diagnosis. We report a case of supradiaphragmatic liver diagnosed by Gd-EOB-DTPA-enhanced magnetic resonance imaging.

MR Study of Wate Exchange and Cell Membrane Permeability in Rat Liver Cells Using a Tissue-Specific MR Contrast Agent (조직 특성 MR 조영제를 이용한 쥐의 간세포막의 물분자 교환 및 투과율의 MR 측정기법)

  • Yongmin Chang
    • Investigative Magnetic Resonance Imaging
    • /
    • v.2 no.1
    • /
    • pp.73-82
    • /
    • 1998
  • Purpose : A precise NMR technique for measuring the rate of water exchange and cell membrane permeability across the hepatocyte membrane using liver-specific MR contrast agent is described. Materials and Methods : The rat hepatocytes isolated by perfusion of the livers were used for the NMR measurements. All experiments were performed on an IBM field cycling relaxometer operating from 0.02MHz to 60 MHz proton Larmor frequency. spin-echo pulse sequence was empolyed to measure spin-lattice relaxation time, T1. The continuous distribution analysis of water proton T1 data from rat hepatocytes containing low concentrations of the liver specific contrast agent, Gd-EOB-DTPA, modeled by a general two compartment exchange model. Results : The mean residence time of water molecule inside the hepatocyte was approximately 250 msec. The lower limit for the permeability of the hepatocyte membrane was $(1.3{\pm}0.1){\;}{\times}{\;}10^{-3}cm/sec$. The CONTIN analysis, which seeks the natural distribution of relaxation times, reveals direct evidence of the effect of diffusive exchange. the diffusive water exchange is not small in the intracellular space in the case of hepatocytes. Conclusions : Gd-EOB-DTPA, when combined with continuous distribution analysis, provides a robust method to study water exchange and membrane permeability in hepatocytes. Water exchange in hepatocyte is much slower thatn that in red blood cells. Therefore, tissue-specific contrast agent may be used as a functional agent to give physiological information such as cell membrane permeability.

  • PDF

Hepatic Lymphoma Representing Iso-Signal Intensity on Hepatobiliary Phase, in Gd-EOB-DTPA-Enhanced MRI: Case Report

  • Ahn, Tae-Ran;Kim, Yeo-Eun;Park, Chul-Hi;Jung, Eun-Ah
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.3
    • /
    • pp.200-204
    • /
    • 2015
  • Image findings of hepatic lymphoma have been reported as variable, ranging from single or multiple small nodules to diffuse infiltrative patterns. On MRI, most hepatic lymphomas show T1 low signal intensity, T2 high signal intensity. Dynamic imaging reveals a hypointense appearance in the arterial phase, followed by delayed enhancement in the portal venous and transitional phase. In the hepatobiliary phase using a hepatocyte-specific contrast agent (which have recently aided in increasing the access to the focal liver lesions), hepatic lymphoma is known to exhibit low signal intensity. We report a case of hepatic lymphoma, which shows iso-signal intensity on hepatobiliary phase, using gadoxetic acid (Gd-EOB-DTPA).

Hepatic Angiomyolipoma Presenting as a Hyperintense Lesion During the Hepatobiliary Phase of Gadoxetic Acid Enhanced-MRI: a Case Report

  • Jeong, Boryeong;Kim, So Yeon;Kang, Hyo Jeong;Shin, Jinho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.26 no.1
    • /
    • pp.60-65
    • /
    • 2022
  • Gadoxetic acid-enhanced magnetic resonance imaging (MRI) has been widely used to detect and characterize focal hepatic lesions. Because gadoxetic acid is a hepatocyte-specific contrast agent, its patterns during hepatobiliary phase enhancement provide useful information for differential diagnoses of focal hepatic lesions. Hepatic angiomyolipoma (AML) is a rare mesenchymal hepatic neoplasm composed of blood vessels, epithelioid cells, and varying amounts of adipose tissue components. Hepatic AMLs usually show marked hypointensity during the hepatobiliary phase of gadoxetic acid-enhanced MRI as hepatic AMLs are devoid of hepatocytes and fibrotic components. The present study describes a patient with hepatic AML and an atypical imaging feature. This tumor showed hyperintensity during the hepatobiliary phase of gadoxetic acid-enhanced MRI, mimicking hepatocellular tumors such as hepatocellular adenoma. The hepatobiliary hyperintensity of this lesion was likely due to multifocal entrapped hepatocytes resulting from an intrasinusoidal growth pattern of tumor cells and insufficient hepatic parenchymal enhancement during the hepatobiliary phase of gadoxetic acid-enhanced MRI.

Primary Hepatic Lymphoma: MR Imaging and Pathologic Correlation (일차성 간림프종: 자기공명영상과 병리소견의 연관)

  • Kim, Han-Na;Shin, Yu-Ri;Rha, Sung-Eun;Jung, Eun-Sun;Oh, Soon-Nam;Choi, Joon-Il;Jung, Seung-Eun;Lee, Young-Joon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.14 no.2
    • /
    • pp.151-155
    • /
    • 2010
  • Primary hepatic lymphoma is extremely rare, representing less than 1% of all extranodal lymphomas. We report MR imaging features and pathologic correlation of a case of primary hepatic lymphoma. MR images showed a large lobulated mass with gradual contrast enhancement, resembling intrahepatic cholangiocarcinoma. However, both hepatobiliary phase image obtained 20 minutes after injection of hepatocyte specific contrast agent and diffusion-weighted image demonstrated characteristic three layered pattern representing viable lymphoma in the outer layer, tumor necrosis in the middle layer and necrotic hepatic parenchyma in the center.

Evaluation and Prediction of Post-Hepatectomy Liver Failure Using Imaging Techniques: Value of Gadoxetic Acid-Enhanced Magnetic Resonance Imaging

  • Keitaro Sofue;Ryuji Shimada;Eisuke Ueshima;Shohei Komatsu;Takeru Yamaguchi;Shinji Yabe;Yoshiko Ueno;Masatoshi Hori;Takamichi Murakami
    • Korean Journal of Radiology
    • /
    • v.25 no.1
    • /
    • pp.24-32
    • /
    • 2024
  • Despite improvements in operative techniques and perioperative care, post-hepatectomy liver failure (PHLF) remains the most serious cause of morbidity and mortality after surgery, and several risk factors have been identified to predict PHLF. Although volumetric assessment using imaging contributes to surgical simulation by estimating the function of future liver remnants in predicting PHLF, liver function is assumed to be homogeneous throughout the liver. The combination of volumetric and functional analyses may be more useful for an accurate evaluation of liver function and prediction of PHLF than only volumetric analysis. Gadoxetic acid is a hepatocyte-specific magnetic resonance (MR) contrast agent that is taken up by hepatocytes via the OATP1 transporter after intravenous administration. Gadoxetic acid-enhanced MR imaging (MRI) offers information regarding both global and regional functions, leading to a more precise evaluation even in cases with heterogeneous liver function. Various indices, including signal intensity-based methods and MR relaxometry, have been proposed for the estimation of liver function and prediction of PHLF using gadoxetic acid-enhanced MRI. Recent developments in MR techniques, including high-resolution hepatobiliary phase images using deep learning image reconstruction and whole-liver T1 map acquisition, have enabled a more detailed and accurate estimation of liver function in gadoxetic acid-enhanced MRI.