• Title/Summary/Keyword: Hepatocellular carcinoma cells

Search Result 311, Processing Time 0.023 seconds

Fine Needle Aspiration Cytology of Hepatoblastoma -Report of Two Cases- (간아세포종의 세침흡인 세포학적 소견 -2예 증례보고-)

  • Park, Young-Nyun;Lee, Kwang-Gil;Park, Chan-Il
    • The Korean Journal of Cytopathology
    • /
    • v.1 no.1
    • /
    • pp.98-102
    • /
    • 1990
  • Hepatoblastoma (HB) is a rare embryonic malignant tumor of the liver. Most morphological studies on HB have limited to the histological characteristics and only 3 cases of HB have been described in the cytology literature. We present 2 cases of HB occurring in children aged 1 year and 3 years, respectively. The distinctive cytologic features of fine needle aspiration of HB were clusters of tumor cells showing acinar and trabecular pattern, smaller tumor cells with a high nuclear-cytopalsmic ratio and hyperchromatic nuclei having prominent nucleoli, and the presence of extramedullary hematopoiesis and osteoid material. These features were also found in the cell block and the biopsy specimen, and appeared very useful in the differentiation of HB from hepatocellular carcinoma.

  • PDF

The Antiproliferative Effects of Bile Acids and Their Derivatives on HepG2 Human Hepatocellular Carcinoma Cells

  • Park, Hwa-Sun;Yee, Su-Bog;Choi, Hye-Joung;Chung, Sang-Woon;Park, Sang-Eun;Yoo, Young-Hyun;Kim, Nam-Deuk
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.245.2-246
    • /
    • 2002
  • We studied on the antiproliferative effects of bile acids and their derivatives on HepG2 human hepatocellular carcinoma cells. Ursodeoxycholic acid (UDCA) and its synthetic derivative HS-1030. and chenodeoxycholic acid (CDCA) and its synthetic derivatives. HS-1199 and HS\ulcorner200, were used. We focused on the regulation of cell cycle and induction of apoptosis by these bile acid derivatives. (omitted)

  • PDF

Metformin Inhibits Growth of Hepatocellular Carcinoma Cells by Inducing Apoptosis Via Mitochondrion-mediated Pathway

  • Xiong, Yu;Lu, Qing-Jun;Zhao, Jing;Wu, Guo-Yang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3275-3279
    • /
    • 2012
  • Recently, population-based studies of type 2 diabetes patients have provided evidence that metformin treatment is associated with a reduced cancer incidence and mortality, but its mode of action remains unclear. Here we report effects of metformin on hepatocellular carcinoma (HCC) Hep-G2 cells and details of molecular mechanisms of metformin activity. Our research indicates that metformin displays anticancer activity against HCC through inhibition of the mTOR translational pathway in an AMPK-independent manner, leading to G1 arrest in the cell-cycle and subsequent cell apoptosis through the mitochondrion-dependent pathway. Furthermore, we showed that metformin strongly attenuated colony formation and dramatically inhibited Hep-G2 tumor growth in vivo. In conclusion, our studies suggested that metformin might have potential as a cytotoxic drug in the prevention and treatment of HCC.

Induction of Apoptosis by Aloe Vera Extract in Human Hepatocellular Carcinoma HepG2 Cells (알로에 베라 추출물에 의한 사람 간암 세포주 HepG2의 Apoptosis 유도)

  • Kim, Il-Rang;Kwon, Hoon-Jeong
    • Toxicological Research
    • /
    • v.22 no.4
    • /
    • pp.329-332
    • /
    • 2006
  • Ethanolic extract of Aloe vera (Aloe barbadensis Miller) was examined for the cellular toxicity on HepG2 human hepatocellular carcinoma cells. Treatment with Aloe vera extract resulted in DNA fragmentation but not LDH release, suggesting an apoptosis instead of necrosis. Aloe vera induced cytotoxicity was mediated by decrease in ATP levels, whereas GSH depletion, increase in intracellular $Ca^{2+}$, or activation of caspase-3/7 could not be observed with statistical significance. No activation of caspase-3/7 suggests the possibility of caspase-independent apoptosis. Taken together, our results show that Aloe vera extract induce HepG2 apoptosis by ATP depletion-related impairment of mitochondria, which is caspase-independent.

Induction of Apoptosis by Bile Acids in HepG2 Human Hepatocellular Carcinoma Cells

  • Baek, Jin-Hyen;Kim, Jung-Ae;Kang, Chang-Mo;Lee, Yong-Soo;Kim, Kyu-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.1
    • /
    • pp.107-115
    • /
    • 1997
  • We studied the effects of bile acids on the induction ofapoptosis in HepG2 human hepatocellular carcinoma cells. Treatment with either ursodeoxycholic acid (UDCA) or lithocholic acid (LCA) resulted in a dose- and time-dependent decrease in cell viability assessed by MTT assay. Both UDCA and LCA also induced genomic DNA fragmentation, a hallmark of apoptosis, indicating that the mechanism by which these bile acids induce cell death was through apoptosis. Cycloheximide, a protein synthesis inhibitor, blocked the apoptosis induced by these bile acids, implying that new protein synthesis may be required for the apoptosis. Intracellular $Ca^{2+}$ release blockers (dantrolene and 3,4,5-trimethoxybenzoic acid-8-(diethylamino)octyl ester) inhibited decreased cell viability and DNA fragmentation induced by these bile acids. Treatment of HepG2 cells with calcium ionophore A23l87 induced DNA fragmentation. These results suggest that UDCA and LCA induce apoptosis in the HepG2 cells and that the activation of intracellular $Ca^{2+}$ signals may play an important role in the apoptosis induced by these bile acids.

  • PDF

Different Immunology Mechanisms of Phellinus igniarius in Inhibiting Growth of Liver Cancer and Melanoma Cells

  • Zhou, Cui;Jiang, Song-Song;Wang, Cui-Yan;Li, Rong;Che, Hui-Lian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3659-3665
    • /
    • 2014
  • To assess inhibition mechanisms of a Phellinus igniarius (PI) extract on cancer, C57BL/6 mice were orally treated with PI extractive after or before implanting H22 (hepatocellular carcinoma ) or B16 (melanoma) cells. Mice were orally gavaged with different doses of PI for 36 days 24h after introduction of H22 or B16 cells. Mice in another group were orally treated as above daily for 42 days and implanted with H22 cells on day 7. Then the T lymphocyte, antibody, cytokine, LAK, NK cell activity in spleen, tumor cell apoptosis status and tumor inhibition in related organs, as well as the expression of iNOS and PCNA in tumor tissue were examined. The PI extract could improve animal immunity as well as inhibit cancer cell growth and metastasis with a dose-response relationship. Notably, PI's regulation with the two kinds of tumor appeared to occur in different ways, since the antibody profile and tumor metastasis demonstrated variation between animals implanted with hepatocellular carcinoma and melanoma cells.

Preparation of Microspheres Encapsulating a Recombinant TIMP-1 Adenovirus and their Inhibition of Proliferation of Hepatocellular Carcinoma Cells

  • Xia, Dong;Yao, Hui;Liu, Qing;Xu, Liang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6363-6368
    • /
    • 2012
  • Objective: The study aim was to prepare poly-DL-lactide-poly (PELA) microspheres encapsulating recombinant tissue inhibitors of metalloproteinase-1 (TIMP-1) in an adenovirus to investigate its inhibition on the proliferation of hepatocellular carcinoma cells HepG2. Methods: Microspheres were prepared by encapsulating the recombinant TIMP-1 adenovirus into biodegradable PELA. The particle size, viral load, encapsulation efficiency and in-vitro release were measured. Microspheres were used to infect HepG2 cells, then infection efficiency was examined under a fluorescent microscope and ultrastructural changes assessed by TEM. Expression of TIMP-1 mRNA in HepG2 cells was examined by semi-quantitative RT-PCR and proliferation by MTT and cell growth curve assays. Results: We successfully prepared microspheres encapsulating recombinant TIMP-1 adenovirus with a diameter of $1.965{\mu}m$, an encapsulation efficiency of 60.0%, a viral load of $10.5{\times}10^8/mg$ and approximate 60% of virus release within 120 h, the total releasing time of which was longer than 240 h. The microspheres were confirmed to be non-toxic with blank microspheres. Infected HepG2 cells could stably maintain in-vitro expression of TIMP-1, with significantly effects on biological behaviour Conclusion: PELA microspheres encapsulating a recombinant TIMP-1 adenovirus can markedly inhibit the proliferation of HepG2 cells, which provides an experimental basis for polymer/chemistry-based gene therapy of hepatocellular carcinomas.

Nutlin-3 downregulates p53 phosphorylation on serine392 and induces apoptosis in hepatocellular carcinoma cells

  • Shi, Xinli;Liu, Jingli;Ren, Laifeng;Mao, Nan;Tan, Fang;Ding, Nana;Yang, Jing;Li, Mingyuan
    • BMB Reports
    • /
    • v.47 no.4
    • /
    • pp.221-226
    • /
    • 2014
  • Drug-resistance and imbalance of apoptotic regulation limit chemotherapy clinical application for the human hepatocellular carcinoma (HCC) treatment. The reactivation of p53 is an attractive therapeutic strategy in cancer with disrupted-p53 function. Nutlin-3, a MDM2 antagonist, has antitumor activity in various cancers. The post-translational modifications of p53 are a hot topic, but there are some controversy ideas about the function of phospho-$Ser^{392}$-p53 protein in cancer cell lines in response to Nutlin-3. Therefore, we investigated the relationship between Nutlin-3 and phospho-$Ser^{392}$-p53 protein expression levels in SMMC-7721 (wild-type TP53) and HuH-7 cells (mutant TP53). We demonstrated that Nutlin-3 induced apoptosis through down-regulation phospho-$Ser^{392}$-p53 in two HCC cells. The result suggests that inhibition of p53 phosphorylation on $Ser^{392}$ presents an alternative for HCC chemotherapy.

Auranofin accelerates spermidine-induced apoptosis via reactive oxygen species generation and suppression of PI3K/Akt signaling pathway in hepatocellular carcinoma

  • Hyun Hwangbo;Da Hye Kim;Min Yeong Kim;Seon Yeong Ji;EunJin Bang;Su Hyun Hong;Yung Hyun Choi;JaeHun Cheong
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.2
    • /
    • pp.133-144
    • /
    • 2023
  • Auranofin is a US Food and Drug Administration (FDA)-approved anti-arthritis medication that functions as a thioredoxin reductase inhibitor. Spermidine, a polyamine present in marine algae, can exert various physiological functions. Herein, we examined the synergistic anticancer activity of auranofin and spermidine in hepatocellular carcinoma (HCC). Combined treatment with auranofin and spermidine suppressed cell viability more efficiently than either treatment alone in HCC Hep3B cells. The isobologram plotted by calculating the half maximal inhibitory concentration (IC50) values of each drug indicated that the two drugs exhibited a synergistic effect. Based on the analysis of annexin V and cell cycle distribution, auranofin and spermidine markedly induced apoptosis in Hep3B cells. Moreover, auranofin and spermidine increased mitochondria-mediated apoptosis by promoting mitochondrial membrane potential (Δψm) loss. Auranofin and spermidine significantly increased reactive oxygen species (ROS) production in Hep3B cells, and the blocking ROS suppressed apoptosis induced by spermidine and auranofin. In addition, auranofin and spermidine reduced the expression of phosphorylated phosphatidylinositol-3 kinase (PI3K) and protein kinase B (Akt), and PI3K inhibitor accelerated auranofin- and spermidine-induced apoptosis. Using ROS scavenger and PI3K inhibitor, we revealed that ROS acts upstream of auranofin- and spermidine-induced apoptosis. Collectively, our study suggests that combination treatment with auranofin and spermidine could afford synergistic anticancer activity via ROS overproduction and reduced PI3K/Akt signaling pathway.