• Title/Summary/Keyword: Hepatitis C virus infection

Search Result 135, Processing Time 0.053 seconds

Induction of Cytotoxic T Lymphocyte Response against the Core and NS3 Genes of the Hepatitis C Virus in Balb/c Mice

  • Kim, Na-Young;Sohn, He-Kwang;Choe, Joon-Ho;Park, Sang-Dai;Seong, Rho-Hyun
    • Animal cells and systems
    • /
    • v.3 no.3
    • /
    • pp.337-341
    • /
    • 1999
  • Hepatitis C virus (HCV) is a positive strand RNA virus of the Flaviviridae family and the major cause of post-transfusion non-A, non-B hepatitis. Vaccine development for HCV is essential but has been slowed by poor understanding of the type of immunity that naturally terminates HCV infection. The DNA-based immunization technique offers the potential advantage of including cellular immune responses against conserved internal proteins of a virus, as well as the generation of antibodies to viral surface proteins. Here, we demonstrate that cell lines expressing the HCV core and/or NS3 proteins can induce a specific CTL response in mice, and these results suggest a possibility that the HCV core and NS3 DNA can be used to induce CTL activity against the antigen in mice and can be further developed as a therapeutic and preventive DNA vaccine.

  • PDF

Selection of Peptides Binding to HCV E2 and Inhibiting Viral Infectivity

  • Hong, Hye-Won;Lee, Seong-Wook;Myung, Hee-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1769-1771
    • /
    • 2010
  • The envelope glycoprotein E2 of hepatitis C virus (HCV) binds to various cell surface receptors for viral infection. We performed biopanning against this protein and selected peptides from phage display peptide libraries. Two short peptides, pep7-1 and pep12-1, were selected and their ability to inhibit the infection process was investigated. When pep7-1 was present, the infectivity of HCV particles in cell culture was notably decreased. This decrease was demonstrated by Western blot analysis, immunofluorescence assay, and reverse transcription PCR assay. However, pep12-1 showed little inhibitory effect on HCV infection.

A Case-Control Study on Association Between Hepatocellular Carcinoma and Infection of Hepatitis B and Hepatitis C Virus (B형간염바이러스 및 C형간염바이러스의 표식자 양성율과 원발성 간세포 암의 연관성에 대한 환자-대조군 연구)

  • Ahn, Hyeong-Sik;Kim, Min-Ho;Kim, Young-Sick;Kim, Joung-Soon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.30 no.1 s.56
    • /
    • pp.1-15
    • /
    • 1997
  • To investigate the association between hepatocellular carcinema(HCC) and infection of hepatitis B virus(HBV) and hepatitis C virus(HCV) in an HBV endemic area, a case-control study of 254 patients with HCC and of 1,270 age and sex matched health control subjects was done. Among the 254 HCC patients 166(65.4%) were positive for hepatitis B surface antigen(HBsAg), 49(19.3%) were positive for HCV antibody (anti-HCV Ab). The crude odd ratio of patients with HBsAg was 36.1(95% CI :22.4-58.2) and with anti-HCV Ab was 9.0(95% CI :5.5-14.6). In an analysis, which HBsAg(-), HBcAb(-), anti-HCV Ab(-) group was chosen as referent group, odd ratio of HBsAg(+) group was 14.4(95% CI: 7.2-28.9) and of anti- HCV Ab(+) was 10.7(95% CI: 2.9-40.0). odd ratio of anti-HCV Ab(+), HBsAg(+) group and anti-HCV Ab(+), HBsAg(-), HbcAb(+) group for HCC were elevated to 27.3(95% CI : 9.0-82.9), 15.9(95% CI:7.1-35.8) respectly, The odd ratio of anti-HCV Ab(-), HBsAg(-), HBcAb(+) group was 2.4(95% CI : 1.1-5.0). These result suggested that HBV and HCV were associated with HCC. In HBV endemic area patients with HBcAb alone should be considered risk group for HCC.

  • PDF

The Synthesis of Diverse Adenosine 5'-phosphonate Analogues as Chain Terminators against Hepatitis C Virus (HCV)

  • Kim, Bo-Seung;Kim, Beom-Tae;Hwang, Ki-Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1643-1648
    • /
    • 2010
  • Adenosine 5'-phosphonates have been reported as potential chain terminators against Hepatitis C virus (HCV); therefore, we developed convenient sequences for synthesis of modified adenosine 5'-phosphonates in which the hydroxyl group at 2' or 3'-position of the sugar moiety is substituted with the azido or amino group and the oxymethyl group at the 4'-position is modified by the ethylene or vinyl group. This synthetic sequence can provide six adenosine 5'-phosphonates via one protocol, and is considered to be very efficient and a convenient route of synthesis. An assay of adenosine 5'-phosphonate analogues (1, 2, 3, 4, 5, and 6) against HCV infection is now in progress.

Construction and Characterization of an Anti-Hepatitis B Virus preS1 Humanized Antibody that Binds to the Essential Receptor Binding Site

  • Wi, Jimin;Jeong, Mun Sik;Hong, Hyo Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1336-1344
    • /
    • 2017
  • Hepatitis B virus (HBV) is a major cause of liver cirrhosis and hepatocellular carcinoma. With recent identification of HBV receptor, inhibition of virus entry has become a promising concept in the development of new antiviral drugs. To date, 10 HBV genotypes (A-J) have been defined. We previously generated two murine anti-preS1 monoclonal antibodies (mAbs), KR359 and KR127, that recognize amino acids (aa) 19-26 and 37-45, respectively, in the receptor binding site (aa 13-58, genotype C). Each mAb exhibited virus neutralizing activity in vitro, and a humanized version of KR127 effectively neutralized HBV infection in chimpanzees. In the present study, we constructed a humanized version (HzKR359-1) of KR359 whose antigen binding activity is 4.4-fold higher than that of KR359, as assessed by competitive ELISA, and produced recombinant preS1 antigens (aa 1-60) of different genotypes to investigate the binding capacities of HzKR359-1 and a humanized version (HzKR127-3.2) of KR127 to the 10 HBV genotypes. The results indicate that HzKR359-1 can bind to five genotypes (A, B, C, H, and J), and HzKR127-3.2 can also bind to five genotypes (A, C, D, G, and I). The combination of these two antibodies can bind to eight genotypes (A-D, G-J), and to genotype C additively. Considering that genotypes A-D are common, whereas genotypes E and F are occasionally represented in small patient population, the combination of these two antibodies might block the entry of most virus genotypes and thus broadly neutralize HBV infection.

Cooperative stimulation of cisplatin-mediated apoptosis by hepatitis B virus X Protein and hepatitis C virus core Protein (B형 간염 바이러스 X 단백질과 C형 간염 바이러스의 코어 단백질에 의한 cisplatin-매개성 세포 예정사의 협조적 촉진)

  • Kwun, Hyun-Jin;Jang, Kyung-Lib
    • Journal of Life Science
    • /
    • v.17 no.6 s.86
    • /
    • pp.766-771
    • /
    • 2007
  • The co-infection with hepatitis B virus (HBV) and hepatitis C Virus (HCV) is associated with a more severe liver disease and increased frequency in the development of hepatocellular carcinoma com-pared to those with single infection. Here, we demonstrated that HBV X protein (HBx) and HCV Core cooperatively up-regulated the level of p53 in human hepatoma HepG2 cells. The elevated p53 subsequently stimulated the expression of proapoptotic Bax whereas it repressed the expression of antiapoptotic Bcl2. These effects, however, were not observed in p53-negative Hep3B cells. Consistently to their cooperative regulation of apoptotic effectors, HBx and HCV Core additively stimulated cisplatin-mediated apoptotic cell death of HepG2 but not of Hep3B cells. These results may help to explain the development of a more severe liver disease in patients co-infection with HBV and HCV as well as some contradictory results on the roles of HBx and Core in apoptosis.

Interaction of Hepatitis C Virus Core Protein with Janus Kinase Is Required for Efficient Production of Infectious Viruses

  • Lee, Choongho
    • Biomolecules & Therapeutics
    • /
    • v.21 no.2
    • /
    • pp.97-106
    • /
    • 2013
  • Chronic hepatitis C virus (HCV) infection is responsible for the development of liver cirrhosis and hepatocellular carcinoma. HCV core protein plays not only a structural role in the virion morphogenesis by encapsidating a virus RNA genome but also a non-structural role in HCV-induced pathogenesis by blocking innate immunity. Especially, it has been shown to regulate JAK-STAT signaling pathway through its direct interaction with Janus kinase (JAK) via its proline-rich JAK-binding motif ($^{79}{\underline{P}}GY{\underline{P}}WP^{84}$). However, little is known about the physiological significance of this HCV core-JAK association in the context of the virus life cycle. In order to gain an insight, a mutant HCV genome (J6/JFH1-79A82A) was constructed to express the mutant core with a defective JAK-binding motif ($^{79}{\underline{A}}GY{\underline{A}}WP^{84}$) using an HCV genotype 2a infectious clone (J6/JFH1). When this mutant HCV genome was introduced into hepatocarcinoma cells, it was found to be severely impaired in its ability to produce infectious viruses in spite of its robust RNA genome replication. Taken together, all these results suggest an essential requirement of HCV core-JAK protein interaction for efficient production of infectious viruses and the potential of using core-JAK blockers as a new anti-HCV therapy.

Induction of Interleukin-8 Expression in Synovial Cell by Hepatitis C Virus Core Protein (활막 세포에서 HCV Core 단백에 의한 Interleukin-8 발현 유도)

  • Wang, Jin-Sang;Her, Won-Hee;Kim, So-Yeon;Yoon, Seung-Kew
    • IMMUNE NETWORK
    • /
    • v.6 no.1
    • /
    • pp.20-26
    • /
    • 2006
  • Background: Rheumatoid arthritis (RA) is a chronic and systemic inflammatory disease that is characterized by invasive synovial hyperplasia, leading to progressive joint destruction. Recent studies have described that RA is caused by virus, bacteria or outside material. Approximately 2 to 20% of RA cases arc reported to be associated with infected hepatitis C virus (HCV). However, the mechanisms underlying virus-induced RA are still unknown. Moreover, few molecular studies have addressed the inflammatory aspects of HCV-associated autoimmune RA. In this study, we aimed to determine whe ther or not another HCV core protein transactivates the IL-8 gene expression, prototypic chemokine, in synovial cell. Methods: To establish the HCV core expressing stable synovial cell line, pCI-neo-core, a plasmid encoding HCV core protein, were transfected to HIG-82 cell line that is an established cell line from rabbit periaricular soft tissue. We examined the morphological changes and cell cycle distribution of HIG-82 cells with expression of HCV core protein by inverted microscopy and flow cytometry analysis, respectively. Also, we determined the mRNA levels of Interleukin (IL)-6 and IL-8 related to the inflammation by RT-PCR and then analyzed regulation of IL-8 expression by the NF-${\kappa}B$ pathway. Results: Our study showed no significant differences in morphology and cell cycle between HIG-82 control cell line and HIG-82 expressing HCV core protein. However, expression of HCV core protein induces the IL-8 mRNA expression in HIG-82 core cells via activated NF-${\kappa}B$ pathway. Conclusion: These results suggest that HCV core protein can lead to enhanced IL-8 expression. Such a proinflammatory role may contribute to the etiologic pathogenesis in RA patients with HCV infection.

Management of hepatitis C viral infection in chronic kidney disease patients on hemodialysis in the era of direct-acting antivirals

  • Ko, Soon Young;Choe, Won Hyeok
    • Clinical and Molecular Hepatology
    • /
    • v.24 no.4
    • /
    • pp.351-357
    • /
    • 2018
  • The advent of novel, direct-acting antiviral (DAA) regimens for hepatitis C virus (HCV) infection has revolutionized its treatment by producing a sustained virologic response of more than 95% with few side effects and no comorbidities in the general population. Until recently, ideal DAA regimens have not been available to patients with severe renal impairment and end-stage renal disease because there are limited data on the pharmacokinetics, safety, and efficacy of treatment in this unique population. In a hemodialysis context, identifying patients in need of treatment and preventing HCV transmission may also be a matter of concern. Recently published studies suggest that a combination of paritaprevir/ritonavir/ombitasvir and dasabuvir, elbasvir/grazoprevir, or glecaprevir/pibrentasvir successfully treats HCV infection in chronic kidney disease stage 4 or 5 patients with or without hemodialysis.

Hepatitis C Virus Prevalence and Genotyping among Hepatocellular Carcinoma Patients in Baghdad

  • Al-Kubaisy, Waqar Abd Al Qahar;Obaid, Kadhim Jawad;Noor, Nor Aini Mohd;Ibrahim, Nik Shamsidah Binti Nik;Al-Azawi, Ahmed Albu-Kareem
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7725-7730
    • /
    • 2014
  • Hepatocellular carcinoma (HCC) is the third most common cause for cancer death in the world, now being especially linked to chronic hepatitis C virus (HCV) infection. This case-control study consisting of 65 HCC patients and 82 patients with other malignant tumours as controls was conducted to determine the association of HCV markers with HCC. Serum of each participant was obtained for detection of HCV Ab and RNA by DNA enzyme immunoassay (DEIA). Twenty six per cent (26.0%) of HCC patients had positive anti-HCV which was significantly greater than the control group (p=0.001). HCC patients significantly have a risk of exposure to HCV infection almost 3 times than the control group (OR=2.87, 95% C.I=1.1-7). Anti-HCV seropositive rate was significantly (p=0.03) higher among old age HCC patients and increases with age. Males with HCC significantly showed to have more than 9 times risk of exposure to HCV infection (OR=9.375, 95 % CI=1.299-67.647) than females. HCV-RNA seropositive rate was (70.8%) significantly higher among HCC patients compared to (22.2%) the control group (p=0.019). The most prevalent genotype (as a single or mixed pattern of infection) was HCV-1b. This study detected a significantly higher HCV seropositive rate of antibodies and RNA in HCC patients.