• 제목/요약/키워드: Hepatic response

검색결과 206건 처리시간 0.029초

Loss of hepatic Sirt7 accelerates diethylnitrosamine (DEN)-induced formation of hepatocellular carcinoma by impairing DNA damage repair

  • Yuna Kim;Baeki E. Kang;Karim Gariani;Joanna Gariani;Junguee Lee;Hyun-Jin Kim;Chang-Woo Lee;Kristina Schoonjans;Johan Auwerx;Dongryeol Ryu
    • BMB Reports
    • /
    • 제57권2호
    • /
    • pp.98-103
    • /
    • 2024
  • The mammalian sirtuin family (SIRT1-SIRT7) has shown diverse biological roles in the regulation and maintenance of genome stability under genotoxic stress. SIRT7, one of the least studied sirtuin, has been demonstrated to be a key factor for DNA damage response (DDR). However, conflicting results have proposed that Sirt7 is an oncogenic factor to promote transformation in cancer cells. To address this inconsistency, we investigated properties of SIRT7 in hepatocellular carcinoma (HCC) regulation under DNA damage and found that loss of hepatic Sirt7 accelerated HCC progression. Specifically, the number, size, and volume of hepatic tumor colonies in diethylnitrosamine (DEN) injected Sirt7-deficient liver were markedly enhanced. Further, levels of HCC progression markers and pro-inflammatory cytokines were significantly elevated in the absence of hepatic Sirt7, unlike those in the control. In chromatin, SIRT7 was stabilized and colocalized to damage site by inhibiting the induction of γH2AX under DNA damage. Together, our findings suggest that SIRT7 is a crucial factor for DNA damage repair and that hepatic loss-of-Sirt7 can promote genomic instability and accelerate HCC development, unlike early studies describing that Sirt7 is an oncogenic factor.

DA-6034 ameliorates hepatic steatosis and inflammation in high fat diet-induced obese mice

  • Hong Min Kim;Mi-Hye Kwon;Eun Soo Lee;Kyung Bong Ha;Choon Hee Chung
    • Journal of Yeungnam Medical Science
    • /
    • 제41권2호
    • /
    • pp.103-112
    • /
    • 2024
  • Background: Nonalcoholic fatty liver disease (NAFLD) is characterized by an increase in hepatic triglyceride content and increased inflammatory macrophage infiltration through the C-C motif chemokine receptor (CCR) 5 pathway in the liver. DA-6034 (7-carboxymethyloxy-3',4',5-trimethoxy flavone), is a synthetic derivative of eupatilin that exhibits anti-inflammatory activity in inflammatory bowel disease. However, the effect of DA-6034 on the inflammatory response in NAFLD is not well elucidated. Therefore, we aimed to determine the effect of DA-6034 on hepatic steatosis and inflammation. Methods: Forty male C57BL/6J mice were divided into the following four groups: (1) regular diet (RD), (2) RD with DA-6034, (3) high fat diet (HFD), and (4) HFD with DA-6034. All mice were sacrificed 12 weeks after the start of the experiment. The effects of DA-6034 on macrophages were assessed using RAW 264.7 cells. Results: DA-6034 not only reduced hepatic triglyceride levels and lipid accumulation but also macrophage infiltration and proinflammatory cytokines in HFD-fed mice. According to fluorescence-activated cell sorter analysis, DA-6034 reduced the CD8+ T cell fraction in the liver of HFD-fed mice. DA-6034 also reduced CCR5 expression and the migration of liver macrophages in HFD-fed mice and inhibited CCR2 ligand and CCR4 ligand, which stimulated the migration of macrophages. Conclusion: Overall, DA-6034 attenuates hepatic steatosis and inflammation in obesity by regulating CCR5 expression in macrophages.

Presentation of Progressive Familial Intrahepatic Cholestasis Type 3 Mimicking Wilson Disease: Molecular Genetic Diagnosis and Response to Treatment

  • Boga, Salih;Jain, Dhanpat;Schilsky, Michael L.
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제18권3호
    • /
    • pp.202-208
    • /
    • 2015
  • Progressive familial intrahepatic cholestasis type 3 (PFIC3) is an autosomal recessive disorder of cholestasis of hepatocellular origin, typically seen in infancy or childhood caused by a defect in the ABCB4 located on chromosome 7. Here we report on an older patient, aged 15, who presented with biochemical testing that led to an initial consideration of a diagnosis of Wilson disease (WD) resulting in a delayed diagnosis of PFIC3. Diagnosis of PFIC3 was later confirmed by molecular studies that identified novel mutations in the ABCB4 gene. Cholestasis due to PFIC3 can cause elevated hepatic copper and increased urine copper excretion that overlap with current diagnostic criteria for WD. Molecular diagnostics are very useful for establishing the diagnosis of PFIC3. Ursodeoxycholic acid ameliorates cholestasis in PFIC3, and may help mediate a reduction in hepatic copper content in response to treatment.

Toxicogenomics Study on ${\alpha}-Naphthylisothiocyanate\;(ANIT)$ Induced Hepatotoxictiy in Mice

  • Hwang, Ji-Yoon;Lim, Jung-Sun;Jeong, Sun-Young;Park, Han-Jin;Cho, Jae-Woo;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • 제2권1호
    • /
    • pp.48-53
    • /
    • 2006
  • [ ${\alpha}-Naphthylisothiocyanate$ ] (ANIT) induces intrahepatic cholestasis, involving damage to biliary epitheial cells. This study investigates hepatic gene expression and histopathological alterations in response to ANIT treatment in order to elucidate early time response of ANIT-induced hepatotoxicity. ANIT was treated with single dose (3, 6, and 60 mg/kg) in corn oil by oral gavage. Serum biochemical and histopathological observation were performed for evaluation of hepatotoxicity level. Affymetrix oligo DNA chips were used for gene expression profile by ANIT-induced hetpatoxicity. Hepatic enzyme levels (ALT, AST, and ALP) were increased in 24 hr high dose group. In microscopic observations, moderate hepatocellular necrosis, were confirmed 24 hr high dose groups. We found that gene expression patterns were dependent on time and dose. Our selected genes were related inflammation and immunomodulation. In this study, ANIT-induced hepatotoxicity was involved in acute phase responses and provides evidence for role of neutrophil could be mechanism associated with ANIT-mediated hepatotoxicity.

LI-RADS Version 2018 Treatment Response Algorithm: Diagnostic Performance after Transarterial Radioembolization for Hepatocellular Carcinoma

  • Jongjin Yoon;Sunyoung Lee;Jaeseung Shin;Seung-seob Kim;Gyoung Min Kim;Jong Yun Won
    • Korean Journal of Radiology
    • /
    • 제22권8호
    • /
    • pp.1279-1288
    • /
    • 2021
  • Objective: To assess the diagnostic performance of the Liver Imaging Reporting and Data System (LI-RADS) version 2018 treatment response algorithm (TRA) for the evaluation of hepatocellular carcinoma (HCC) treated with transarterial radioembolization. Materials and Methods: This retrospective study included patients who underwent transarterial radioembolization for HCC followed by hepatic surgery between January 2011 and December 2019. The resected lesions were determined to have either complete (100%) or incomplete (< 100%) necrosis based on histopathology. Three radiologists independently reviewed the CT or MR images of pre- and post-treatment lesions and assigned categories based on the LI-RADS version 2018 and the TRA, respectively. Diagnostic performances of LI-RADS treatment response (LR-TR) viable and nonviable categories were assessed for each reader, using histopathology from hepatic surgeries as a reference standard. Inter-reader agreements were evaluated using Fleiss κ. Results: A total of 27 patients (mean age ± standard deviation, 55.9 ± 9.1 years; 24 male) with 34 lesions (15 with complete necrosis and 19 with incomplete necrosis on histopathology) were included. To predict complete necrosis, the LR-TR nonviable category had a sensitivity of 73.3-80.0% and a specificity of 78.9-89.5%. For predicting incomplete necrosis, the LR-TR viable category had a sensitivity of 73.7-79.0% and a specificity of 93.3-100%. Five (14.7%) of 34 treated lesions were categorized as LR-TR equivocal by consensus, with two of the five lesions demonstrating incomplete necrosis. Interreader agreement for the LR-TR category was 0.81 (95% confidence interval: 0.66-0.96). Conclusion: The LI-RADS version 2018 TRA can be used to predict the histopathologic viability of HCCs treated with transarterial radioembolization.

Role of Kupffer Cells in Vasoregulatory Gene Expression During Endotoxemia

  • Kim, Tae-Hoon;Lee, Sun-Mee
    • Biomolecules & Therapeutics
    • /
    • 제16권4호
    • /
    • pp.306-311
    • /
    • 2008
  • Although hepatic microcirculatory dysfunction occurs during endotoxemia, the mechanism responsible for this remains unclear. Since Kupffer cells provide signals that regulate hepatic response in inflammation, this study was designed to investigate the role of Kupffer cells in the imbalance in the expression of vasoactive mediators. Endotoxemia was induced by intraperitoneal E. coli endotoxin (LPS, 1 mg/kg body weight). Kupffer cells were inactivated with gadolinium chloride ($GdCl_3$, 7.5 mg/kg body weight, intravenously) 2 days prior to LPS exposure. Liver samples were taken 6 h following LPS exposure for RT-PCR analysis of mRNA for genes of interest: endothelin (ET-1), its receptors $ET_A$ and $ET_B$, inducible nitric oxide synthase (iNOS), heme oxygenase (HO-1), and tumor necrosis factor-$\alpha$ (TNF-$\alpha$). mRNA levels for iNOS and TNF-$\alpha$ were significantly increased 31.8-fold and 26.7-fold in LPS-treated animals, respectively. This increase was markedly attenuated by $GdCl_3$, HO-1 expression significantly increased in LPS-treated animals, with no significant difference between saline and $GdCl_3$ groups. ET-1 was increased by LPS. mRNA levels for $ET_A$ receptor showed no change, whereas $ET_B$ transcripts increased in LPS-treated animals. The increase in $ET_B$ transcripts was potentiated by $GdCl_3$. We conclude that activation of Kupffer cells plays an important role in the imbalanced hepatic vasoregulatory gene expression induced by endotoxin.

Microarray Analysis of the Gene Expression Profile in Diethylnitrosamine-induced Liver Tumors in Mice

  • Jung Eun-Soo;Park Jung-Duck;Ryu Doug-Young
    • 한국환경성돌연변이발암원학회지
    • /
    • 제25권4호
    • /
    • pp.134-142
    • /
    • 2005
  • Liver cancer is a leading cause of tumor-related mortality, Diethylnitrosamine (DEN) is one of the most extensively studied hepatic carcinogens to date. In this study, the mRNA expression profile in DEN-induced liver tumors in mice was analyzed using DNA microarrays. We report increased expression of genes that participate in hypoxia response, including metallothionein 1 (Mt1), metallothionein 2 (Mt2), fatty acid synthase (Fasn), transferrin (Trf), adipose differentiation-related Protein (AdfP) and ceruloplasmin (CP), as well as those involved in predisposition and development of cancers, such as cytochrome P450 2A5 (Cyp2a5), alpha 2-HS-glycoprotein (Ahsg) and Jun-B oncogene (Junb). The hepatic iron regulatory peptide, hepcidin (Hampl), was downregulated in DEN-stimulated liver tumors. Expression of tumor suppressor genes, such as tripartite motif protein 13 (Trim13), was decreased under these conditions. The data collectively indicate that DEN-induced tumor development can be exploited as a possible model for liver cancer, since this process involves various genes with important functions in hepatic carcinogenesis.

  • PDF

Treatment outcome of hepatic re-irradiation in patients with hepatocellular carcinoma

  • Seol, Seung Won;Yu, Jeong Il;Park, Hee Chul;Lim, Do Hoon;Oh, Dongryul;Noh, Jae Myoung;Cho, Won Kyung;Paik, Seung Woon
    • Radiation Oncology Journal
    • /
    • 제33권4호
    • /
    • pp.276-283
    • /
    • 2015
  • Purpose: We evaluated the efficacy and toxicity of repeated high dose 3-dimensional conformal radiation therapy (3D-CRT) for patients with unresectable hepatocellular carcinoma. Materials and Methods: Between 1998 and 2011, 45 patients received hepatic re-irradiation with high dose 3D-CRT in Samsung Medical Center. After excluding two ineligible patients, 43 patients were retrospectively reviewed. RT was delivered with palliative or salvage intent, and equivalent dose of 2 Gy fractions for ${\alpha}/{\beta}=10Gy$ ranged from $31.25Gy_{10}$ to $93.75Gy_{10}$ (median, $44Gy_{10}$). Tumor response and toxicity were evaluated based on the modified Response Evaluation Criteria in Solid Tumors criteria and the Common Terminology Criteria for Adverse Events (CTCAE) ver. 4.0. Results: The median follow-up duration was 11.2 months (range, 4.1 to 58.3 months). An objective tumor response rate was 62.8%. The tumor response rates were 81.0% and 45.5% in patients receiving ${\geq}45Gy_{10}$ and $<45Gy_{10}$, respectively (p = 0.016). The median overall survival (OS) of all patients was 11.2 months. The OS was significantly affected by the Child-Pugh class as 14.2 months vs. 6.1 months (Child-Pugh A vs. B, p < 0.001), and modified Union for International Cancer Control (UICC) T stage as 15.6 months vs. 8.3 months (T1-3 vs. T4, p = 0.004), respectively. Grade III toxicities were developed in two patients, both of whom received ${\geq}50Gy_{10}$. Conclusion: Hepatic re-irradiation may be an effective and tolerable treatment for patients who are not eligible for further local treatment modalities, especially in patients with Child-Pugh A and T1-3.

Myeloid-specific SIRT1 Deletion Aggravates Hepatic Inflammation and Steatosis in High-fat Diet-fed Mice

  • Kim, Kyung Eun;Kim, Hwajin;Heo, Rok Won;Shi, Hyun Joo;Yi, Chin-ok;Lee, Dong Hoon;Kim, Hyun Joon;Kang, Sang Soo;Cho, Gyeong Jae;Choi, Wan Sung;Roh, Gu Seob
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권5호
    • /
    • pp.451-460
    • /
    • 2015
  • Sirtuin 1 (SIRT1) is a mammalian $NAD^+$-dependent protein deacetylase that regulates cellular metabolism and inflammatory response. The organ-specific deletion of SIRT1 induces local inflammation and insulin resistance in dietary and genetic obesity. Macrophage-mediated inflammation contributes to insulin resistance and metabolic syndrome, however, the macrophage-specific SIRT1 function in the context of obesity is largely unknown. C57/BL6 wild type (WT) or myeloid-specific SIRT1 knockout (KO) mice were fed a high-fat diet (HFD) or normal diet (ND) for 12 weeks. Metabolic parameters and markers of hepatic steatosis and inflammation in liver were compared in WT and KO mice. SIRT1 deletion enhanced HFD-induced changes on body and liver weight gain, and increased glucose and insulin resistance. In liver, SIRT1 deletion increased the acetylation, and enhanced HFD-induced nuclear translocation of nuclear factor kappa B (NF-${\kappa}B$), hepatic inflammation and macrophage infiltration. HFD-fed KO mice showed severe hepatic steatosis by activating lipogenic pathway through sterol regulatory element-binding protein 1 (SREBP-1), and hepatic fibrogenesis, as indicated by induction of connective tissue growth factor (CTGF), alpha-smooth muscle actin (${\alpha}$-SMA), and collagen secretion. Myeloid-specific deletion of SIRT1 stimulates obesity-induced inflammation and increases the risk of hepatic fibrosis. Targeted induction of macrophage SIRT1 may be a good therapy for alleviating inflammation-associated metabolic syndrome.

Type II Mirizzi 증후군 1례 (A CASE OF TYPE II7 MIRIZZI SYNDROME)

  • 김홍진;이주형;신명준;권굉보;장재천;정문관
    • Journal of Yeungnam Medical Science
    • /
    • 제7권2호
    • /
    • pp.197-202
    • /
    • 1990
  • 저자들은 최근 4일간의 우측 상복부 동통 및 경미한 황달을 주소로 내원한 71세 남자 환자에서 임상적으로 경피적 간담관조영술, 복부 초음파검사, 간기능 검사, 복강 동맥 조영술을 시행하여 Type II Mirizzi 증후군으로 진단된 1예를 치험하였기에 문헌고찰과 함께 보고하는 바이다.

  • PDF