• Title/Summary/Keyword: HepG2 cell line

Search Result 190, Processing Time 0.023 seconds

Novel Trimeric Complex for Efficient Uptake of Plasmid Vector into HepG2 Cells

  • Joo, Jong-Hyuck;Park, Jong-Gu
    • Biomedical Science Letters
    • /
    • v.9 no.2
    • /
    • pp.67-74
    • /
    • 2003
  • Viral and non-viral vectors have been used in the delivery of genetic materials into animal cells and tissues, with each approach having pros and cons. Non-viral vectors have many useful merits such as easy preparation, low immunity and size tolerance of a transgene when compared to those of viral vectors. Delivery specificity may be achieved by complex formation between receptor ligands and a non-viral vector. In the present study, non-viral vector systems are investigated in an effort to find a practical delivery means for gene therapy, Receptor-ligand interaction between transferrin-receptor and transferrin was utilized for efficient gene transfer into cancer cells. A plasmid vector, pcDNA3 (LacZ) was ligated with a small duplexed oligo fragment in which a Biotin- VN$^{TM}$ phosphoramidite was placed in the middle of the oligo. The plasmid vector labeled by biotin was then conjugated with biotin-labeled transferrin via streptavidin. This trimeric conjugates were delivered to a hepatoma cell line, HepG2. The delivery efficiency of the trimeric conjugate was 2-fold higher than that of cationic liposomes used for transfection of a plasmid vector. These results demonstrate that a plasmid vector can be efficiently transferred into cells by forming a trimeric complex of plasmid vector-linker-ligand.

  • PDF

Ibuprofen Increases the Hepatotoxicity of Ethanol through Potentiating Oxidative Stress

  • Kim, Minjeong;Lee, Eugenia Jin;Lim, Kyung-Min
    • Biomolecules & Therapeutics
    • /
    • v.29 no.2
    • /
    • pp.205-210
    • /
    • 2021
  • Over 30 million prescriptions of NSAIDs (non-steroidal anti-inflammatory drugs) are issued every year. Considering that these drugs are available without a prescription as over the counter (OTC) drugs, their use will be astronomical. With the increasing use of NSAIDs, their adverse effects are drawing attention. Especially, stomach bleeding, kidney toxicity, liver toxicity, and neurological toxicity are reported as common. Ibuprofen, one of the extensively used NSAIDs along with aspirin, can also induce liver toxicity, but few studies are addressing this point. Here we examined the liver toxicity of ibuprofen and investigated whether co-exposure to ethanol can manifest synergistic effects. We employed 2D and 3D cultured human hepatoma cells, HepG2 to examine the synergistic hepatotoxicity of ibuprofen and alcohol concerning cell viability, morphology, and histology of 3D spheroids. As a result, ibuprofen and alcohol provoked synergistic hepatotoxicity against hepatocytes, and their toxicity increased prominently in 3D culture upon extended exposure. Oxidative stress appeared to be the mechanisms underlying the synergistic toxicity of ibuprofen and alcohol as evidenced by increased production of ROS and expression of the endogenous antioxidant system. Collectively, this study has demonstrated that ibuprofen and EtOH can induce synergistic hepatotoxicity, providing a line of evidence for caution against the use of ibuprofen in combination with alcohol.

Effects of Cancer Prevention and Immune Stimulation of Fractions from Capsosiphon fulvescens (매생이 추출분획의 암 예방 및 면역증진 효과)

  • Kim, Nam-Young;Jang, Min-Kyung;Lee, Dong-Geun;Lee, Jae-Hwa;Ha, Jong-Myung;Ha, Bae-Jin;Jang, Jeong-Su;Lee, Sang-Hyeon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.5
    • /
    • pp.1249-1253
    • /
    • 2006
  • The fractions of Capsosiphon fulvescens were studied to verify the anticancer and immunostimulating activity. The fractions from the ethanol extract of C. fulvescens were prepared by the systematic extraction procedure with the solvents such as hexane, ethyl ether, methanol, butanol and H$_2$O. The cytotoxic effects of C. fulvescens fractions against human leukemia cell line U937, mouse neuroblastoma cell line (NB41A3), human hepatoma cell line (HepG2)and rat glioma cell line (C6) were investigated. Ethyl ether fraction of C. fulvescens showed the highest cytotoxicity against all four cell lines tested. In addition, H$_2$O fraction also showed relatively high cytotoxicity. Dose dependent patterns were observed on all four cell lines. The immune-stimulating effects of C. fulvescens fractions on rat macrophage cell line (RAW 264.7) were also investigated. All five fractions of C. fulvescens extract stimulated NO production with concentration dependant manner. These results suggest that C. fulvescens may be a useful candidate for a natural antitumor and immune-stimulating agent.

Functional Properties of Water Extracts from Different Parts of Acanthopanax sessiliflorus (오가피 부위별 열수 추출액의 기능적 특성)

  • Choi, Jae-Myoung;Kim, Kwang-Yup;Lee, Sang-Hwa;Ahn, Jun-Bae
    • Food Engineering Progress
    • /
    • v.15 no.2
    • /
    • pp.130-135
    • /
    • 2011
  • Acanthopanax sessiliflorus (A. sessiliflorus) has been known as a traditional medicine having anti-stress, antioxidative and platelet aggregation inhibitory effects. This study was undertaken to investigate the functional properties of water extracts from four parts of A. sessiliflorus. Root, stem, leaf and fruit extracts from A. sessiliflorus were prepared with hot water ($80^{\circ}C$). The contents of functional substances, eleutheroside B and E, polyphenol, antioxidative activity, nitrite scavenging ability and anti-cancer activity of the extracts were determined. The contents of eleutheroside E in stem, root and fruit extracts were 542.50 ${\mu}$g/g, 343.35 ${\mu}$g/g and 30.78 ${\mu}$g/g, respectively. A large part of eleutheroside B was found in fruit (372.01 ${\mu}$g/g) and root (289.33 ${\mu}$g/g) extracts. Root and stem extracts contained 227.21 mg/100g and 131.22 mg/100g of polyphenols, respectively. Antioxidative activities (electron donating ability) of stem and root extracts were 79.87% and 77.27%, respectively. It appears that the antioxidative activities were related to polyphenol contents of the extracts. Most extracts showed 76-81.5% of nitrite scavenging ability at pH 1.2. It reveals that water extract from parts of A. sessiliflorus can inhibit formation of nitrosoamine in food. Effects of the extracts on the growth of normal and cancer cell lines were investigated. Extracts showed no cytotoxicity to normal dendritic cell line (DC2.4). Especially, the root extract promoted the growth of normal cell line. Root and stem extracts had 20-23% of inhibitory effect against stomach cancer cell line (SNU-719) and liver cancer cell line (Hep3B). These result indicated that the extracts from A. sessiliflorus can be used as functional food materials with antioxidative activity and nitrite scavenging ability to eliminate nitrosoamine in food.

Topoisomerase I and II Inhibitory Activities and Cytotoxic Constituents from the Barks of Tilia amurnesis

  • Piao, Dong Gen;Lee, You-Jeong;Seo, Chang-Seob;Lee, Chong-Soon;Kim, Jae-Ryong;Chang, Hyun-Wook;Son, Jong-Keun
    • Natural Product Sciences
    • /
    • v.17 no.3
    • /
    • pp.245-249
    • /
    • 2011
  • Eight compounds, squalene (1), friedelin (2), ${\beta}$-sitosterol (3), ${\beta}$-sitosterol-3-O-glucoside (4), ${\alpha}$-tocopherol (5), betulinic acid (6), trilinolein (7) and 1-O-(9Z,12Z-Octadecadienoyl)-3-nonadecanoyl glycerol (8), were isolated from the barks of Tilia amurensis. Their chemical structures were identified by comparing their physicochemical and spectral data with those published in the literature. These isolated compounds were examined for their inhibitory activities against topoisomerase I and II. Compound 7 showed significant inhibition of DNA topoisomerase I and II activities, with percent decreases in activity of 87 and 95%, respectively at a concentration of $100\;{\mu}M$. Compound 6 exhibited cytotoxicity against the human colon adenocarcinoma cell line (HT-29), the human breast adenocarcinoma cell line (MCF-7) and the human liver hepatoblastoma cell line (HepG-2), with $IC_{50}$ values of 20, 59 and $16\;{\mu}M$, respectively.

Hepatoprotective effect of Paeoniae radix via Nrf2 activation (Nrf2 활성화(活性化)를 통한 작약(芍藥)의 간보호효과(肝保護效果))

  • Lee, Soo Hwan;Jung, Ji Yun;Park, Sang Mi;Jegal, Kyung Hwan;Byun, Sung Hui;Cho, Il Je;Kim, Sang Chan;Kim, Kwang Joong;Kim, Young Woo
    • The Korea Journal of Herbology
    • /
    • v.31 no.1
    • /
    • pp.33-40
    • /
    • 2016
  • Objectives : Liver is one of the largest organs in the human, and has a function of detoxification and energy sensing to prevent severe disease. Paeoniae radix has been used to treat a variety of liver diseases such as hepatitis and chronic hepatic failure. Although P. radix has been used as an medicinal herb for a long time, the effects of P. radix on severe oxidative stress and its action mechanism on the liver was not clearly verified.Methods : This study investigated the protective effects of P. radix extract (PRE), and the underlying mechanism of its action in the liver. tert-butyl hydroperoxide (t-BHP) and carbon tetrachlroride (CCl4) were used to induce oxidative stress in the HepG2 hepatocyte cell line and Sprague-Dawley rats, respectively.Results : t-BHP significantly induced cell death and ROS production in HepG2 cell, as indicated by MTT and FACS analysis. However, pretreatment of PRE inhibited a decrease in cell viability and H2O2 production in the HepG2 cells. PRE also blocked the ability of t-BHP to damage in mitochondrial membrane transition. More importantly, PRE induced Nrf2 activation and antioxidant Phase II enzyme, which may have a role in the effects of PRE. In mice, PRE inhibited the liver damage induced by CCl4.Conclusions : PRE inhibited oxidative stress and hepatic damages as mediated with Nrf2 activation. This study unveil, in part, the effect and mechanism of old medicinal herb, P. radix.

Enhancement of Anti-tumor Activity of Newcastle Disease Virus by the Synergistic Effect of Cytosine Deaminase

  • Lv, Zheng;Zhang, Tian-Yuan;Yin, Jie-Chao;Wang, Hui;Sun, Tian;Chen, Li-Qun;Bai, Fu-Liang;Wu, Wei;Ren, Gui-Ping;Li, De-Shan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7489-7496
    • /
    • 2013
  • This study was conducted to investigate enhancement of anti-tumor effects of the lentogenic Newcastle disease virus Clone30 strain (NDV rClone30) expressing cytosine deaminase (CD) gene against tumor cells and in murine groin tumor-bearing models. Cytotoxic effects of the rClone30-CD/5-FC on the HepG2 cell line were examined by an MTT method. Anti-tumor activity of rClone30-CD/5-FC was examined in H22 tumor-bearing mice. Compared to the rClone30-CD virus treatment alone, NDV rClone30-CD/5-FC at 0.1 and 1 MOIs exerted significant cytotoxic effects (P<0.05) on HepG2 cells. For treatment of H22 tumor-bearing mice, recombinant NDV was injected together with 5-FC given by either intra-tumor injection or tail vein injection. When 5-FC was administered by intra-tumor injection, survival for the rClone30-CD/5-FC-treated mice was 4/6 for 80 days period vs 1/6, 0/6 and 0/6 for the mice treated with rClone30-CD, 5-FC and saline alone, respectively. When 5-FC was given by tail vein injection, survival for the rClone30-CD/5-FC-treated mice was 3/6 vs 2/6, 0/6 and 0/6 for the mice treated with rClone30-CD, 5-FC or saline alone, respectively. In this study, NDV was used for the first time to deliver the suicide gene for cancer therapy. Incorporation of the CD gene in the lentogenic NDV genome together with 5-FC significantly enhances cell death of HepG2 tumor cells in vitro, decreases tumor volume and increases survival of H22 tumor-bearing mice in vivo.

Sulforaphane is Superior to Glucoraphanin in Modulating Carcinogen-Metabolising Enzymes in Hep G2 Cells

  • Abdull Razis, Ahmad Faizal;Noor, Noramaliza Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.4235-4238
    • /
    • 2013
  • Glucoraphanin is the main glucosinolate found in broccoli and other cruciferous vegetables (Brassicaceae). The objective of the study was to evaluate whether glucoraphanin and its breakdown product sulforaphane, are potent modulators of various phase I and phase II enzymes involved in carcinogen-metabolising enzyme systems in vitro. The glucosinolate glucoraphanin was isolated from cruciferous vegetables and exposed to human hepatoma cell line HepG2 at various concentrations (0-25 ${\mu}M$) for 24 hours. Glucoraphanin at higher concentration (25 ${\mu}M$) decreased dealkylation of methoxyresorufin, a marker for cytochrome P4501 activity; supplementation of the incubation medium with myrosinase (0.018 U), the enzyme that converts glucosinolate to its corresponding isothiocyanate, showed minimal induction in this enzyme activity at concentration 10 ${\mu}M$. Quinone reductase and glutathione S-transferase activities were unaffected by this glucosinolate; however, supplementation of the incubation medium with myrosinase elevated quinone reductase activity. It may be inferred that the breakdown product of glucoraphanin, in this case sulforaphane, is superior than its precursor in modulating carcinogen-metabolising enzyme systems in vitro and this is likely to impact on the chemopreventive activity linked to cruciferous vegetable consumption.

Antitumor Effects of Kluyveromyces marxianus TFM-7 Isolated from Kefir

  • Lee, Hyun-Jung;Nam, Bo-Ra;Kim, Jin-Man;Kim, Ji-Yeon;Paik, Hyun-Dong;Kim, Chang-Han
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.133-137
    • /
    • 2007
  • The Strain TFM-7, Which has an antitumor effect, was isolated from Kefir and identified based on analysis using the API 50 CHL kit and 265 rDNA sequencing. Strain TFM-7 was confirmed to belong to the genus Kluyveromyces. Analysis of the 265 rDNA nucleotide sequences found strain TFM-7 to be related to Kluyveromyces marxianus. NRRL Y-828IT. K. marxianus. TFM-7 was cultured with potato dektrose broth medium at $27^{\circ}C$ for 72 hr, and its inhibition effects on the proliferation of seven tumor cell lines and a normal cell line were assessed using the MTT assay. The antitumor effects and growth characteristics of K. marxianus TFM-7 were investigated during a culture period of 7 days. By the $3^{rd}\;day$, K. marxianus TFM-7 showed a dry cell weight 2.39 g/L, a pH of 4.39, an ethanol content of 0.89%, and an inhibition effect on the proliferation of seven tumor cell lines above 50%, except for A-549 tumor cell line. K. marxianus TFM-7 was the most effective at inhibiting the growth of Hep-2 cell line among all tumor cell lines tested. Growth inhibition of a normal cell line, NIH/3T3, was less than 35%, suggesting a decreased level of cytotoxicity toward normal cells. These results indicate that K. marxianus TFM-7 may have used as a yeast strain with antitumor activity.

Conversion Effect to Cotinine from Nicotine by Fucoidan (후코이단에 의한 니코틴의 코티닌 전환 효과)

  • Lee, Keyong Ho;Rhee, Ki-Hyeong
    • The Korean Journal of Food And Nutrition
    • /
    • v.27 no.4
    • /
    • pp.725-731
    • /
    • 2014
  • This study aims to find the correlation the low-molecule fucoidan for cancer prevention with an accelerated formation of cotinine. In the presence of fucoidan, a nicotine to cotinine coversion was studied in established assay, direct mixture method and Hep-G2 cell line method. Fucoidan of $1{\mu}g/mL$ showed the potential effect for converting nicotine to cotinine in the direct mixture method compared to control. Increase of conversion rate at the treatment of fucoidan is exhibited as 15 times compared to control. In Hep-G2 cell treatment, fucoidan showed the potential activity for converting nicotine to cotinine as 6 times compared to control. Therefore, fucoidan was shown to be effective in the conversion of nicotine into cotinine even though it is not higher content of polyphenol and flavonoid than its of green tea extract.