• 제목/요약/키워드: HepG2 cell line

검색결과 190건 처리시간 0.022초

Propolis from the Stingless Bee Trigona incisa from East Kalimantan, Indonesia, Induces In Vitro Cytotoxicity and Apoptosis in Cancer Cell lines

  • Kustiawan, Paula M;Phuwapraisirisan, Preecha;Puthong, Songchan;Palaga, Tanapat;Arung, Enos T;Chanchao, Chanpen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권15호
    • /
    • pp.6581-6589
    • /
    • 2015
  • Background: Previously, stingless bee (Trigona spp.) products from East Kalimantan, Indonesia, were successfully screened for in vitro antiproliferative activity against human cancer derived cell lines. It was established that propolis from T. incisa presented the highest in vitro cytotoxicity against the SW620 colon cancer cell line (6% cell survival in $20{\mu}g/mL$). Materials and Methods: Propolis from T. incisa was extracted with methanol and further partitioned with n-hexane, ethyl acetate and methanol. The in vitro cytotoxicity of the extracts was assessed by the MTT assay against human colon (SW620), liver (Hep-G2), gastric (KATO-III), lung (Chago) and breast (BT474) cancer derived cell lines. The active fractions were further enriched by silica gel quick column, absorption and size exclusion chromatography. The purity of each fraction was checked by thin layer chromatography. Cytotoxicity in BT-474 cells induced by cardanol compared to doxorubicin were evaluated by MTT assay, induction of cell cycle arrest and cell death by flow cytometric analysis of propidium iodide and annexin-V stained cells. Results: A cardol isomer was found to be the major compound in one active fraction (F45) of T. incisa propolis, with a cytotoxicity against the SW620 ($IC_{50}$ of $4.51{\pm}0.76{\mu}g/mL$), KATO-III (IC50 of $6.06{\pm}0.39{\mu}g/mL$), Hep-G2 ($IC_{50}$ of $0.71{\pm}0.22{\mu}g/mL$), Chago I ($IC_{50}$ of $0.81{\pm}0.18{\mu}g/mL$) and BT474 (IC50 of $4.28{\pm}0.14{\mu}g/mL$) cell lines. Early apoptosis (programmed cell death) of SW620 cells was induced by the cardol containing F45 fraction at the $IC_{50}$ and $IC_{80}$ concentrations, respectively, within 2-6 h of incubation. In addition, the F45 fraction induced cell cycle arrest at the G1 subphase. Conclusions: Indonesian stingless bee (T. incisa) propolis had moderately potent in vitro anticancer activity on human cancer derived cell lines. Cardol or 5-pentadecyl resorcinol was identified as a major active compound and induced apoptosis in SW620 cells in an early period (${\leq}6h$) and cell cycle arrest at the G1 subphase. Thus, cardol is a potential candidate for cancer chemotherapy.

Antioxidant, Antimicrobial, and Antitumor Activities of Partially Purified Substance(s) from Green Tea Seed

  • Choi, Jae-Hoon;Nam, Jung-Oak;Kim, Ji-Yeon;Kim, Jin-Man;Paik, Hyun-Dong;Kim, Chang-Han
    • Food Science and Biotechnology
    • /
    • 제15권5호
    • /
    • pp.672-676
    • /
    • 2006
  • The aim of this study is to evaluate the antioxidant, antimicrobial, and antitumor activities of various concentrations of partially purified substance(s) from green tea seed (Camellia sinensis L.). The total polyphenol contents of each fraction (non-adsorption fraction: F-1, fraction eluted with 40% methanol: F-2, and fraction eluted with 100% methanol: F-3) purified by Diaion HP-20 column chromatography were, in the increasing order: F-1 (3.7 mg tannic acid equivalents, TAB/g) < F-3 (23.2 mg TAB/g) < seed extracts (26.2 mg TAB/g) < F-2 (42.7 mg TAB/g). The scavenging activities toward the 1,1-diphenyl-2-picyrylhydrazyl (DPPH) radical were, in decreasing order: F-2 (93.3%) > butylated hydroxytoluene (BHT; 89.8%) > ascorbic acid (89.3%) > leaf extracts (70.3%) > F-3 (15.9%) > seed extracts (15.8%) > F-1 (14.8%) at a 0.1% concentration. In studies on antimicrobial activities, the results indicate that the growth of yeast (Candida albicans KCCM 11282 and Cryptococcus neoformans KCCM 50544) was inhibited more so than that of other fungi (Alternaria alternate KCTC 6005 and Rhizoctonia solani). In addition, it appears that the antitumor activities of the F-1, F-2, and F-3 fractions at a concentration of $50\;{\mu}g/mL$ showed 6, 7, and 23% growth inhibition of the HEC-1B cell line, 14, 11, 82% inhibition of the HEP-2 cell line, and 8, 16, and 81% inhibition of the SK-OV-3 cell line, respectively. Overall these results indicate that the antioxidant activity is greatest in the F-2 fraction, and the antimicrobial and antitumor activities are greatest in the F-3 fraction.

Insulin Resistance Reduces Sensitivity to Cis-Platinum and Promotes Adhesion, Migration and Invasion in HepG2 Cells

  • Li, Lin-Jing;Li, Guang-Di;Wei, Hu-Lai;Chen, Jing;Liu, Yu-Mei;Li, Fei;Xie, Bei;Wang, Bei;Li, Cai-Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권7호
    • /
    • pp.3123-3128
    • /
    • 2014
  • The liver is normally the major site of glucose metabolism in intact organisms and the most important target organ for the action of insulin. It has been widely accepted that insulin resistance (IR) is closely associated with postoperative recurrence of hepatocellular carcinoma (HCC). However, the relationship between IR and drug resistance in liver cancer cells is unclear. In the present study, IR was induced in HepG2 cells via incubation with a high concentration of insulin. Once the insulin-resistant cell line was established, the stability of HepG2/IR cells was further tested via incubation in insulin-free medium for another 72h. Afterwards, the biological effects of insulin resistance on adhesion, migration, invasion and sensitivity to cis-platinum (DDP) of cells were determined. The results indicated that glucose consumption was reduced in insulin-resistant cells. In addition, the expression of the insulin receptor and glucose transportor-2 was downregulated. Furthermore, HepG2/IR cells displayed markedly enhanced adhesion, migration, and invasion. Most importantly, these cells exhibited a lower sensitivity to DDP. By contrast, HepG2/IR cells exhibited decreased adhesion and invasion after treatment with the insulin sensitizer pioglitazone hydrochloride. The results suggest that IR is closely related to drug resistance as well as adhesion, migration, and invasion in HepG2 cells. These findings may help explain the clinical observation of limited efficacy for chemotherapy on a background of IR, which promotes the invasion and migration of cancer cells.

Anti-metastatic Potential of Ethanol Extract of Saussurea involucrata against Hepatic Cancer in vitro

  • Byambaragchaa, Munkhzaya;de la Cruz, Joseph;Yang, Seung Hak;Hwang, Seong-Gu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권9호
    • /
    • pp.5397-5402
    • /
    • 2013
  • The rates of morbidity and mortality of hepatocellular carcinoma (HCC) have not lessened because of difficulty in treating tumor metastasis. Mongolian Saussurea involucrata (SIE) possesses various anticancer activities, including apoptosis and cell cycle arrest. However, detailed effects and molecular mechanisms of SIE on metastasis are unclear. Thus, the present study was undertaken to investigate antimetastatic effects on HCC cells as well as possible mechanisms. Effects of SIE on the growth, adhesion, migration, aggregation and invasion of the SK-Hep1 human HCC cell line were investigated. SIE inhibited cell growth of metastatic cells in dose- and time-dependent manners. Incubation of SK-Hep1 cells with $200-400{\mu}g/mL$ of SIE significantly inhibited cell adhesion to gelatin-coated substrate. In the migration (wound healing) and aggregation assays, SIE treated cells showed lower levels than untreated cells. Invasion assays revealed that SIE treatment inhibited cell invasion capacity of HCC cells substantially. Quantitative real time PCR showed inhibitory effects of SIE on MMP-2/-9 and MT1-MMP mRNA levels, and stimulatory effects on TIMP-1, an inhibitor of MMPs. The present study not only demonstrated that invasion and motility of cancer cells were inhibited by SIE, but also indicated that such effects were likely associated with the decrease in MMP-2/-9 expression of SK-Hep1 cells. From these results, it was suggested that SIE could be used as potential anti-tumor agent.

한국산 검정콩 색소의 생리활성효과 (Physiological Effect of Korean Black Soybean Pigment)

  • 손준호;정명근;최희진;장운빈;손규목;변명우;최청
    • 한국식품과학회지
    • /
    • 제33권6호
    • /
    • pp.764-768
    • /
    • 2001
  • 한국산 검정콩의 종피색소를 1% HCI 용액으로 $4^{\circ}C$에서 24시간 추출하여 $0.45\;mu}m$ membrane filter로 여과한 후 Sep-pak plus $C_{18}$ cartridge를 통과시켜 흡착된 색소성분을 메탄올로 용출시켜 $30^{\circ}C$에서 농축하여 실험을 실시하였다. 검정콩 세 가지 품종의 조색소액의 생리활성 효과를 살펴본 결과 고혈압에 관여하는 angiotensin converting enzyme 저해실험에서는 검정콩 1호, 일품검정콩 및 밀양 95호에서의 ($IC_{50}$)는 각각 0.22, 0.28, 0.38mg/mL로 나타나 검정콩 1호가 가장 우수하였다. 통풍에 관여하는 xanthine oxidase 저해실험에서의 ($IC_{50}$)이 각각 0.118, 0.165, 0.163mg/mL로 나타나 angiotensin converting enzyme 저해실험에서와 동일하게 검정콩 1호가 가장 높게 나타났다. 항염증효과를 살펴본 결과 $cPLA_2$를 50% 저해하는 ($IC_{50}$)값이 19.7, 10.7, $25.3\;{\mu}g/mL$로 나타났으며, 암세포 증식 억제능을 실험한 결과 각각의 시료 중 밀양 95호가 0.5mg/mL의 농도에서 사람 유래의 결장암 세포주인 HT-29 및 사람과 마우스 유래의 간암 세포주인 HepG2와 Hepa에 대하여 각각 66.0%, 58.2%, 64.4%의 억제능을 보여 시료 중 가장 높은 함암효과를 나타내었다. 이러한 결과로 볼 때 함암효과에서는 하나의 색소로 구성된 검정콩 1호보다는 여러 색소 성분이 공존하는 것이 더 유리한 결과를 나타내었으며, 여러 가지 기능성을 가지는 색소임을 알 수 있었다.

  • PDF

알파 아마니틴에 의한 간독성에 대한 갯방풍의 보호 효과 (In vitro Protective Effects of Glehnia Littoralis on Alpha-amanitin Induced Hepatotoxicity)

  • 김보현;선경훈;김선표;박용진
    • 대한임상독성학회지
    • /
    • 제15권2호
    • /
    • pp.107-115
    • /
    • 2017
  • Purpose: Glehnia littoralis has been used to treat ischemic stroke, phlegm, cough, systemic paralysis, antipyretics and neuralgia. The pharmacological mechanisms of Glehnia littoralis include calcium channel block, coumarin derivatives, anticoagulation, anti-convulsive effect, as well as anti-oxidant and anti-inflammatory effects. Alpha-amanitin (${\alpha}$-amanitin) is a major toxin from extremely poisonous Amanita fungi. Oxidative stress, which may contribute to severe hepatotoxicity was induced by ${\alpha}$-amanitin. The aim of this study was to investigate whether Glehnia littoralis ethyl acetate extract (GLEA) has the protective antioxidant effects on ${\alpha}$-amanitin -induced hepatotoxicity. Methods: Human hepatoma cell line HepG2 cells were pretreated in the presence or absence of GLEA (50, 100 and $200{\mu}g/ml$) for 4 hours, then exposed to $60{\mu}mol/L$ of${\alpha}$-amanitin for an additional 4 hours. Cell viability was evaluated using the MTT method. AST, ALT, and LDH production in a culture medium and intracellular MDA, GSH, and SOD levels were determined. Results: GLEA (50, 100 and $200{\mu}g/ml$) significantly increased the relative cell viability by 7.11, 9.87, and 14.39%, respectively, and reduced the level of ALT by 10.39%, 34.27%, and 52.14%, AST by 9.89%, 15.16%, and 32.84%, as well as LDH by 15.86%, 22.98%, and 24.32% in culture medium, respectively. GLEA could also remarkably decrease the level of MDA and increase the content of GSH and SOD in the HepG2 cells. Conclusion: In the in vitro model, Glehnia littoralis was effective in limiting hepatic injury after ${\alpha}$-amanitin poisoning. Its antioxidant effect is attenuated by antidotal therapy.

Stevia rebaudiana의 항산화 효과 (Anti-oxidant Effect on Stevia rebaudiana)

  • 정은혜;서혜림;김민규;김영우;조일제
    • 동의생리병리학회지
    • /
    • 제27권6호
    • /
    • pp.764-770
    • /
    • 2013
  • Stevia rebaudiana is a traditional herb used as a sweetener in Brazil and Paraguay as well as Korea and China. This study investigated the efficacy of Stevia rebaudiana methanol extract (SRE) to protect cells against the mitochondrial dysfunction and apoptosis in hepatocyte. To determine the effects of SRE on oxidative stress, we used the human derived hepatocyte cell line, HepG2 cell. Treatment of arachidonic acid (AA)+iron in HepG2 cells synergistically amplified cytotoxicity, as indicated by the excess reactive oxygen species (ROS) and mitochondrial permeability transition by fluorescence activated cell sorter (FACS) and immunoblot analysis. Treatment with SRE protected hepatocytes from AA+iron-induced cellular toxicity, as shown by alterations in the protein levels related with cell viability such as procaspase-3. SRE also prevented the mitochondrial dysfunction induced by AA+iron, and showed anti-oxidant effects as inhibition of $H_2O_2$ production and GSH depletion. Moreover, we measured the effects of SRE on AMP-activated protein kinase (AMPK), a key regulator in determining cell survival or death. Acetyl-CoA Carboxylase (ACC), a direct downstream target of AMPK. SRE increased phosphorylation of ACC, and prevented the inhibition of ACC phosphorylation by AA+iron. These results indicated that SRE has the ability to protect cells against AA+iron-induced $H_2O_2$ production and mitochondrial impairment, which may be mediated with AMPK-ACC pathway.

Visualization of Hepatitis B Virus (HBV) Surface Protein Binding to HepG2 Cells

  • Lee, Dong-Gun;Park, Jung-Hyun;Choi, Eun-A;Han, Mi-Young;Kim, Kil-Lyong;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • 제29권2호
    • /
    • pp.175-179
    • /
    • 1996
  • Viral surface proteins are known to play an essential role in attachment of the virus particle to the host cell membrane. In case of the hepatitis B virus (HBV) several reports have described potential receptors on the target cell side, but no definite receptor protein has been isolated yet. As for the viral side, it has been suggested that the preS region of the envelope protein, especially the preS1 region, is involved in binding of HBV to the host cell. In this study, preS1 region was recombinantly expressed in the form of a maltose binding protein (MBP) fusion protein and used to identify and visualize the expression of putative HBV receptor(s) on the host cell. Using laser scanned confocal microscopy and by FACS analysis, MBP-preS1 proteins were shown to bind to the human hepatoma cell line HepG2 in a receptor-ligand specific manner. The binding kinetic of MBP-preS1 to its cellular receptor was shown to be temperature and time dependent. In cells permeabilized with Triton X-100 and treated with the fusion protein, a specific staining of the nuclear membrane could be observed. To determine the precise location of the receptor binding site within the preS1 region, several short overlapping peptides from this region were synthesized and used in a competition assay. In this way the receptor binding epitope in preS1 was revealed to be amino acid residues 27 to 51, which is in agreement with previous reports. These results confirm the significance of the preS1 region in virus attachment in general, and suggest an internalization pathway mediated by direct attachment of the viral particle to the target cell membrane.

  • PDF

목향(木香)함유 DHL과 ML이 간세포 보호에 미치는 영향 (Effects of Radix Saussurea on hepatoprotection)

  • 박종찬;윤용갑
    • 대한한의학방제학회지
    • /
    • 제16권2호
    • /
    • pp.193-204
    • /
    • 2008
  • Dehydrocostus lactone (DHL) and Mokko lactone (ML) were isolated from Saussureae Radix, and their effects on heme oxygenase-1 (HO-1) expression and hepatoprotection in the liver cell line HepG2 were investigated. DHL induced HO-1 expression and HO activity in a dose-dependent manner, whereas ML lacking one double bond property at 11 and 13 carbons on its own chemical structure had no apparent effects. DHL also induced Nrf2 nuclear translocation and enhanced antioxidant response element (ARE) activation which mediated HO-1 gene transcription. Pretreatment with DHL protected HepG2 cells against oxidative damages caused by H2O2. Interestingly, the hepatoprotective effects of DHL appeared to be associated with HO enzymatic activation, HO-1 expression and Nrf2 activation, because blockage of HO activity by a HO inhibitor and inhibition of HO-1 and Nrf2 cellular synthesis by small interfering RNA abolished heptoprotection afforded by DHL. Taken together, this investigation provides evidence supporting that Saussureae Radix is hepatoprotective against oxidative stress that causes abnormal liver damages.

  • PDF

현삼 (Scrophularia buergeriana)에서 분리한 화합물의 함량분석 및 간세포 보호 효과 (Isolation and quantitative analysis of metabolites from Scrophularia buergeriana and their hepatoprotective effects against HepG2 Cells)

  • 나현선;오선민;신우철;황보전;김형근;윤다혜;양승환;이영섭;김금숙;백남인;이문순;이대영
    • Journal of Applied Biological Chemistry
    • /
    • 제62권4호
    • /
    • pp.399-406
    • /
    • 2019
  • 현삼(Scrophularia buergeriana) 뿌리를 80% Methanol수용액으로 추출한 뒤, 감압 농축한 추출물을 EtOAc, n-BuOH과 H2O층으로 계통 분획을 실시하였다. n-BuOH분획에 대하여 silica gel, octadecyl SiO2 column chromatograph 및 중압분취(MPLC) 장비를 반복 실시하여 4종의 phenylethanoid glycoside 및 iridoid glycoside계의 화합물을 분리하였다. NMR 및 Mass데이터를 해석하여, harpagoside (1), angoroside C (2), aucubin (3) 및 acetoside (4)로 구조 동정하였다. 분리한 4종의 화합물에 대하여 HPLC 분석법을 이용하여 정량분석한 결과, 11.5 mg/g (1), 7.6 mg/g (2), 41.2 mg/g (3), 및 4.8 mg/g (4) 이 현삼 뿌리에 함유된 것을 확인하였다. 현삼으로부터 분리된 화합물 중 angoroside C 및 acetoside는 에탄올에 의해 저해된 세포 성장률을 검증한 결과, 간암세포종인 HepG2세포에 대해서 간세포를 보호하는 효과가 있음을 확인하였다.