• 제목/요약/키워드: Heo Jong

검색결과 1,507건 처리시간 0.029초

Preliminary Design of Electronic System for the Optical Payload

  • Kong Jong-Pil;Heo Haeng-Pal;Kim YoungSun;Park Jong-Euk;Chang Young-Jun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.637-640
    • /
    • 2005
  • In the development of a electronic system for a optical payload comprising mainly EOS(Electro-Optical Sub-system) and PDTS(Payload Data Transmission Sub-system), many aspects should be investigated and discussed for the easy implementation, for th e higher reliability of operation and for the effective ness in cost, size and weight as well as for the secure interface with components of a satellite bus, etc. As important aspects the interfaces between a satellite bus and a payload, and some design features of the CEU(Camera Electronics Unit) inside the payload are described in this paper. Interfaces between a satellite bus and a payload depend considerably on whether t he payload carries the PMU(Payload Management Un it), which functions as main controller of the Payload, or not. With the PMU inside the payload, EOS and PDTS control is performed through the PMU keep ing the least interfaces of control signals and primary power lines, while the EOS and PDTS control is performed directly by the satellite bus components using relatively many control signals when no PMU exists inside the payload. For the CEU design the output channel configurations of panchromatic and multi-spectral bands including the video image data inter face between EOS and PDTS are described conceptually. The timing information control which is also important and necessary to interpret the received image data is described.

  • PDF

SNR Analysis for Practical Electro-Optical Camera System

  • Kim Youngsun;Kong Jong-Pil;Heo Haeng-Pal;Park Jong-Euk;Chang Young-Jun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.633-636
    • /
    • 2005
  • An electro-optical camera system consists of many subsystems such as the optics, the detector, and the electronics and so on. They may create variations in the processed image that were not present original scene. The performance analysis of the electro-optical camera system is a mathematical construct that provides an optimum design through appropriate trade off analysis. The SNR(Signal to Noise Ratio) is one of the most important performance for the electro-optical camera system. The SNR analysis shown in this paper is performed based on the practical high resolution satellite camera design. For the purpose of the practical camera design, the analysis assumes that the defined radiance, which is calculated for the Korean peninsula, reached directly to the telescope entrance. In addition, the actual operation concept such as integration time and the normal operation altitude is assumed. This paper compares the SNR analysis results according to the various camera characteristics such as the optics, the detector, and the camera electronics. In detail, the optical characteristics can be split into the focal length, F#, transmittance, and so on. And the system responsivity, the quantum efficiency, the TDI stages, the quantization noise and the analogue noise can be used for the detector and the camera electronics characteristics. Finally this paper suggests the optimum design to apply the practical electro-optical system.

  • PDF

New In-Orbit Pixel Correction Method

  • Kim Youngsun;Kong Jong-Pil;Heo Haeng-Pal;Park Jong-Euk;Chang Young-Jun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.604-607
    • /
    • 2005
  • All CCD pixels do not react uniformly even if the light of same radiance enters into the camera. This comes from the different camera optical characteristics, the read-out characteristics, the pixel own characteristics and so on. Usually, the image data of satellite camera can be corrected by the various image-processing methods in the ground. However, sometimes, the in-orbit correction is needed to get the higher quality image. Especially high frequency pixel correction in the middle of in-orbit mission is needed because the in-orbit data compression with the high frequency loss is essential to transmit many data in real time due to the limited RF bandwidth. In this case, this high frequency correction can prevent have to have any unnecessary high frequency loss. This in-orbit correction can be done by the specific correction table, which consists of the gain and the offset correction value for each pixel. So, it is very important to get more accurate correction table for good correction results. This paper shows the new algorithm to get accurate pixel correction table. This algorithm shall be verified theoretically and also verified with the various simulation and the test results.

  • PDF

NON-UNIFORMITY CORRECTION- SYSTEM ANALYSIS FOR MULTI-SPECTRAL CAMERA

  • Park Jong-Euk;Kong Jong-Pil;Heo Haeng-Pal;Kim Young Sun;Chang Young Jun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.478-481
    • /
    • 2005
  • The PMU (Payload Management Unit) is the main subsystem for the management, control and power supply of the MSC (Multi-Spectral Camera) Payload operation. It is the most important function for the electro-optical camera system that performs the Non-Uniformity Correction (NUC) function of the raw imagery data, rearranges the data from the CCD (Charge Coupled Device) detector and output it to the Data Compression and Storage Unit (DCSU). The NUC board in PMU performs it. In this paper, the NUC board system is described in terms of the configuration and the function, the efficiency for non-uniformity correction, and the influence of the data compression upon the peculiar feature of the CCD pixel. The NUC board is an image-processing unit within the PMU that receives video data from the CEV (Camera Electronic Unit) boards via a hotlinkand performs non-uniformity corrections upon the pixels according to commands received from the SBC (Single Board Computer) in the PMU. The lossy compression in DCSU needs the NUC in on-orbit condition.

  • PDF

Work function engineering on transparent conducting ZnO thin films

  • Heo, Gi-Seok;Hong, Sang-Jin;Park, Jong-Woon;Choi, Bum-Ho;Lee, Jong-Ho;Shin, Dong-Chan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1706-1707
    • /
    • 2007
  • A possibility of work function engineering on ZnO thin film is studied by in-situ and ex-situ doping process. The work function of ZnO thin film decreases with increasing boron and phosphorus doping quantity. But, the work function of Al-doped ZnO (AZO) thin film increases as the boron doping quantity incresess. The range of work function change on ZnO thin films is 3.5 eV to 5.5 eV. This result shows that the work function of ZnO thin film is indeed engineerable by changing materials of dopants and their compositional distribution of surface. We also discuss the possible mechanism of work function engineering on ZnO thin films.

  • PDF

Header Data Interpreting S/W Design for MSC(Multi-Spectral Camera) image data

  • Kong Jong-Pil;Heo Haeng-Pal;Kim YoungSun;Park Jong-Euk;Youn Heong-Sik
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.436-439
    • /
    • 2004
  • Output data streams of the MSC contain flags, Headers and image data according to the established protocols and data formats. Especially the Header added to each data lines contain information of a line sync, a line counter and, ancillary data which consist of ancillary identification bit and one ancillary data byte. This information is used by ground station to calculate the geographic coordinates of the image and get the on-board time and several EOS(Electro-Optical Subsystem) parameters used at the time of imaging. Therefore, the EGSE(Electrical Ground Supporting Equipment) that is used for testing MSC has to have functions of interpreting and displaying this Header information correctly following the protocols. This paper describes the design of the header data processing module which is in EOS­EGSE. This module provides users with various test functions such as header validation, ancillary block validation, line-counter and In-line counter validation checks which allow convenient and fast test on imagery data.

  • PDF

IMAGE DATA CHAIN ANALYSIS FOR SATELLITE CAMERA ELECTRONIC SYSTEM

  • Park, Jong-Euk;Kong, Jong-Pil;Heo, Haeng-Pal;Kim, Young-Sun;Chang, Young-Jun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.791-793
    • /
    • 2006
  • In the satellite camera, the incoming light source is converted to electronic analog signals by the electronic component for example CCD (Charge Coupled Device) detectors. The analog signals are amplified, biased and converted into digital signals (pixel data stream) in the video processor (A/Ds). The outputs of the A/Ds are digitally multiplexed and driven out using differential line drivers (two pairs of wires) for cross strap requirement. The MSC (Multi-Spectral Camera) in the KOMPSAT-2 which is a LEO spacecraft will be used to generate observation imagery data in two main channels. The MSC is to obtain data for high-resolution images by converting incoming light from the earth into digital stream of pixel data. The video data outputs are then MUXd, converted to 8 bit bytes, serialized and transmitted to the NUC (Non-Uniformity Correction) module by the Hotlink data transmitter. In this paper, the video data streams, the video data format, and the image data processing routine for satellite camera are described in terms of satellite camera control hardware. The advanced satellite with very high resolution requires faster and more complex image data chain than this algorithm. So, the effective change of the used image data chain and the fast video data transmission method are discussed in this paper

  • PDF

The Overview of CEU Development for a Payload

  • Kong, Jong-Pil;Heo, Haeng-Pal;Kim, Young-Sun;Park, Jong-Euk;Chang, Young-Jun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.797-799
    • /
    • 2006
  • The Electro-optical camera subsystem as a payload of a satellite system consists of OM (optical module) and CEU(camera electronics unit), and most performances of the camera subsystem depend a lot on the CEU in which TDI CCDs(Time Delayed Integration Charge Coupled Device) take the main role of imaging by converting the light intensity into measurable voltage signal. Therefore it is required to specify and design the CEU very carefully at the early stage of development with overall specifications, design considerations, calibration definition, test methods for key performance parameters. This paper describes the overview of CEU development. It lists key requirement characteristics of CEU hardware and design considerations. It also describes what kinds of calibration are required for the CEU and defines the test and evaluation conditions in verifying requirement specifications of the CEU, which are used during acceptance test, considering the fact that CEU performance results change a lot depending on test and evaluation conditions such as operational line rate, TDI level, and light intensity level, so on.

  • PDF

Performance and functionality of SRI detector array and focal plane electronics

  • Kim, Young-Sun;Kong, Jong-Pil;Heo, Haeng-Pal;Park, Jong-Euk;Chang, Young-Jun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.804-807
    • /
    • 2006
  • The SRI(Super Resolution Imager) with 800mm aperture primary mirror is the ground development model of the high resolution satellite camera. The SRI focal plane electronics including detector array generates the data for high-resolution images by converting incoming light into digital stream of pixel data. Since the focal plane including a detector is the basic building block of the camera system, the main system performances is directly determined by its performance. This paper measures the SRI focal plane electronics’ performance such as the dark signal, the dark signal noise, the linearity, the PRNU(Photo Response Non-Uniformity), the SNR(Signal to Noise Ratio) and the sensor saturation capability. In addition, this paper verifies the various functionalities of the SRI focal plane electronics. The electrical test equipment with the specialized software and the optical test equipments such as the integrating sphere, the rotation stage and the target are implemented and used to verify these functionalities and performances.

  • PDF

${N_2}O$ 액체산화제를 사용한 고도 15km급 하이브리드 로켓 설계 (Design of Hybrid Rocket (Altitude 15km) Using Liquid Oxidizer ${N_2}O$)

  • 허준영;조민경;김종찬;김수종;김진곤;문희장;성홍계
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제30회 춘계학술대회논문집
    • /
    • pp.97-100
    • /
    • 2008
  • 시중에서 쉽게 구할 수 있는 알루미늄 seamless tube를 사용하여 고도 15km 하이브리드 사운딩 로켓을 설계하였다. 별도의 가압장치 없이 ${N_2}O$ 액체산화제를 사용한 하이브리드 로켓설계를 위하여 내탄도, 외탄도 해석을 통합적으로 수행하였다. 내탄도 해석으로 요구조건을 만족하는 하이브리드 추진시스템을 설계하였고, 탑재중량을 고려하여 설계된 하이브리드 로켓에 대해 공력해석과 궤적계산을 수행하였다. 로켓의 내탄도와 외탄도 해석을 통합적으로 수행함으로써 하이브리드 로켓의 설계를 위한 기반 기술을 마련하였고, 기초시험 및 기술 자료의 데이터를 이용하여 하이브리드 모터의 성능과 로켓의 공력 및 비행궤적을 검증하였다.

  • PDF