• Title/Summary/Keyword: Hemostatic agents

Search Result 21, Processing Time 0.038 seconds

Biologic response of local hemostatic agents used in endodontic microsurgery

  • Jang, Youngjune;Kim, Hyeon;Roh, Byoung-Duck;Kim, Euiseong
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.2
    • /
    • pp.79-88
    • /
    • 2014
  • Appropriate use of local hemostatic agent is one of the important factors on the prognosis of endodontic microsurgery. However, most investigations to date focus on the hemostatic efficacy of the agents, whereas their biologic characteristics have not received enough attention. The purpose of this paper was to review the biologic response of local hemostatic agents, and to provide clinical guidelines on their use during endodontic microsurgery. Electronic database (PUBMED) was screened to search related studies from 1980 to 2013, and 8 clinical studies and 18 animal studies were identified. Among the materials used in these studies, most widely-investigated and used materials, epinephrine, ferric sulfate (FS) and calcium sulfate (CS), were thoroughly discussed. Influence of these materials on local tissue and systemic condition, such as inflammatory and foreign body reaction, local ischemia, dyspigmentation, delayed or enhanced bone and soft tissue healing, and potential cardiovascular complications were assessed. Additionally, biological property of their carrier materials, cotton pellet and absorbable collagen, were also discussed. Clinicians should be aware of the biologic properties of local hemostatic agents and their carrier materials, and should pay attention to the potential complications when using them in endodontic microsurgery.

Experimental Assessment of Hemostatic Agents: Comparison with New Developed Chitosan-Based Material (신개발 키토산 제재의 지혈 효과에 대한 비교)

  • Cho, Young-Kyoo;Lee, Sang-Yun;Kim, Tae-Jung;Lim, Hyun-Ju;Oh, Eun-Jung;Lee, Soo-Bok;Choi, Kang-Young;Yang, Jung-Dug;Cho, Byung-Chae;Chung, Ho-Yun
    • Archives of Plastic Surgery
    • /
    • v.38 no.4
    • /
    • pp.369-375
    • /
    • 2011
  • Purpose: Many hemostatic agents and dressings have been tested with variable degree of success. Chitosan has a positive charge, it attracts red blood cells, which have a negative charge. Our goal is to test the efficacy of new developed chitosan-based hemostatic materials in providing durable hemostasis in a high-flow arterial wound model. Methods: We compared each group with SD rats motality tests and in vitro blood compatibility test by blood clotting index (BCI). We devided the SD rats into 6 groups (N =15) by type of hemostatic agents. A: 100% nonwoven chitosan (degree of the deacetylation: 90%). B: 50% N-acetylation on nonwoven of chitosan gel (degree of the deacetylation: 50%). C: 60% N-acetylation on nonwoven of chitosan ge (degree of the deacetylation: 40%)l. D: Cutanplast$^{(R)}$. E: HemCon$^{(R)}$ F: Gauze. In vivo test, a proximal arterial injury was created in unilateral femoral arteries of 90 anesthetized SD rats. Each materials was made same size and thickness then applied to the injury site for 3 minutes. In vitro test, we compared each group with BCI in human blood. Results: In vivo test, group A showed lower motality rate of 46% than any other groups, Group B and C showed lower motality rate of 60% than group D and E's motality rate of 66%. In vitro test, BCI of group A ($30.6{\pm}1.2$) and B ($29.3{\pm}1.0$) were showed nearly about group D ($29.1{\pm}1.8$) and E ($27.4{\pm}1.6$). Group C ($37.1{\pm}2.0$) showed higher BCI than group A and B, it means group C decreased blood clotting. Conclusion: In conclusion, this study suggests a newly developed chitosan-based hemostatic materials induced durable hemostasis and increased blood clotting, and are considered as effective biologic hemostatic agents.

Wound healing effect of regenerated oxidized cellulose versus fibrin sealant patch: An in vivo study

  • Yoon, Hyun Sik;Na, Young Cheon;Choi, Keum Ha;Huh, Woo Hoe;Kim, Ji Min
    • Archives of Craniofacial Surgery
    • /
    • v.20 no.5
    • /
    • pp.289-296
    • /
    • 2019
  • Background: Topical hemostatic agents are used when ligation, electrocauterization, or other conventional hemostatic methods are impractical. Because a hemostatic agent is a foreign body, it can cause foreign body reactions, inflammation, and infections that can interfere with the wound healing process. Therefore, we should select hemostatic agents after considering their effects on wound healing. Here, we compared the effects of hemostatic agents on wound healing in a rectus abdominis muscle defect in rats. Methods: Twelve Sprague Dawley rats were subjected to creation of a $6{\times}6mm$ defect in the rectus abdominis muscle and divided into four groups: control group; group A, Tachosil fibrin sealant patch; group B, Surgicel Fibrillar oxidized regenerated cellulose; and group C, Surgicel Snow oxidized regenerated cellulose. For the histologic analysis, biopsies were performed on the 3rd, 7th, and 27th days. Results: The foreign body reaction was the weakest in group A and most significant in group C. The inflammatory cell infiltration was the weakest in group A and similar in groups B and C. Muscle regeneration differed among periods. The rats in group A were the most active initially, while those in group C showed prolonged activity. Conclusion: Tachosil and Surgicel administration increased inflammation via foreign body reactions, but the overall wound healing process was not significantly affected. The increased inflammation in the Surgicel groups was due to a low pH. We recommend using Tachosil, because it results in less intense foreign body reactions than Surgicel and faster wound healing due to the fibrin action.

The influence of hemostatic agent contamination on bond strengths on dentin bonding agents (지혈제가 상아질과 레진 결합력에 미치는 영향)

  • Cho, Jeong-Hyun;Lee, Eun-Jeong;So, Kyung-Mo;Kim, Won;Oh, Nam-Sik;Han, Sang-Hyun;Song, Kyung-Hwa
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.4
    • /
    • pp.351-358
    • /
    • 2008
  • Purpose: This study examined the recovery of the dentin-resin bonding strength, and the difference in the bonding strength after applying pH hemostatic agents at various pH. Materials and methods: Bosmin, Hemodent, Astregedent, and Visine were used as the hemostatic agents in this study. The Bosmin, Hemodent, and Astrigedent hemostatic agents are acidic, and the Visine hemostatic agent is neutral and is used as a decongestant. Ninety human molar teeth were used as the specimen. The teeth were sectioned using a diamond wheel until the dentin was exposed and wet ground by silica paper. The specimens were divided into two groups according to the hemostatic agent used. The specimens were then subdivided into 9 groups according to the application of re etching (R group) or rinsing only (N group). A commonly used resin bonding procedure was used in the control group. The resin bonding procedure was managed dentin using celluloid capsule. In addition, the shear bond strength was measured using an Instron. Results: In general, samples with the applied hemostatic agent, with the exception of Visine, had a slightly weak bond that was similar to the control group. In addition, the rinsing only (N) group had slightly weak bond that was similar to the re etching (R) group. Conclusion: The application of a hemostatic agent on the dentin surface does not affect the shear bond strength after application for a short time. In addition, rinsing only can recover the shear bond strength making other management procedures redundant, particularly re etching.

The study on thd Effect of Blood Coagulation Time in Dogs by administration of Sodium Citrate, Sodium Iodide, Gelatine, and Vitamin-K (4종의 지혈약품(Sodium Citrate, Sodium Iodide, Gelatin, Vitamin-K)이 개의 혈액응고시간에 미치는 영향)

  • Sung Jai Ki
    • Journal of the korean veterinary medical association
    • /
    • v.8 no.6
    • /
    • pp.15-19
    • /
    • 1964
  • 1. Sodium Citrate, Sodim Iodide, Gelatine and Vitamin-K were administered to the dogs in the purpose of determination of blood Coagulation time effected by these hemostatic agents, In this study 6 heads of dogs were used and the results obtained in this e

  • PDF

Effects of Poly-N-acetyl Glucosamine(pGlcNAc) Patch on Wound Healing in db/db Mouse (Poly-N-acetyl-glucosamine이 당뇨병 쥐에서 창상치료에 미치는 영향)

  • Yang, Ho Jik;Yoon, Chi Sun
    • Archives of Plastic Surgery
    • /
    • v.35 no.2
    • /
    • pp.121-126
    • /
    • 2008
  • Purpose: Poly-N-acetyl glucosamine(PGlcNAc) nanofiber-based materials, produced by a marine microalga, have been characterized as effective hemostatic and angiogenic agents. The similarity between PGlcNAc patch and the natural extracellular matrix allows it to support new healthy tissue growth in an injured area and to encourage fluid absorption. In this study, we hypothesized that a poly-N-acetyl glucosamine fiber patch(PGlcNAc patch) may enhance wound healing in the db/db mouse. Methods: PGlcNAc patches were applied on one square centimeter, full-thickness, skin wounds in the db/db mouse model. Wounds(n=15 per group) were dressed with a PGlcNAc nanofiber patch for 1 hour(1 h), 24 hours(24 h) or left untreated(NT). After the application time, patches were removed and wounds were allowed to heal spontaneously. The rate of wound closure was evaluated by digital analysis of unclosed wound area in course of time. At day 10, wounds(n=7 per group) were harvested and quantified with immunohistochemical markers of proliferation(Ki-67) and vascularization (platelet endothelial cell adhesion molecule, PECAM-1). Results: Wounds dressed with PGlcNAc patches for 1 hour closed faster than control wounds, reaching 90% closure in 16.6 days, nine days faster than untreated wounds. Granulation tissue showed higher levels of proliferation and vascularization following 1 h treatment than the 24 h and NT groups. In addition to its hemostatic properties, the PGlcNAc material also appears to accelerate wound closure in healing-impaired genetically diabetic mice. Conclusion: This material, with its combination of hemostatic and wound healing properties, has the potential to be effective agent for the treatment of complicated wounds.

THE CONTROL METHOD OF CONTINUOUS GINGIVAL BLEEDING IN A DISABLED PATIENT WITH BLEEDING DISORDER : REPORT OF A CASE (출혈성 장애환자에서 지속적인 치은출혈시 지혈법 : 증례보고)

  • Son, Jeong-Seog;Oh, Ji-Hyeon;Yoo, Jae-Ha;Kim, Jong-Bae
    • The Journal of Korea Assosiation for Disability and Oral Health
    • /
    • v.10 no.1
    • /
    • pp.31-37
    • /
    • 2014
  • The general local cause of gingival bleeding is the vessel engorgement and erosion by odontogenic infection. Abnormal gingival bleeding is also associated with systemic causes. Bleeding disorders in which continuous gingival bleeding is encountered include the followings : vascular abnormalities, platelet disorders, hypoprothrombinemia and other coagulation defects. There are classic methods for gingival bleeding control, such as, direct pressure, electrocoagulation, suture, crushing and application of hemostatic agents. If the continuous gingival bleeding is not stopped in spite of the conventional methods, the life of patient is threatened owing to upper airway obstruction, syncope, vomiting and hypovolemic shock. Therefore, the rapid and correct hemostatic method is very important in the emergency condition. This is a case report of continuous gingival bleeding control by primary endodontic drainage & suture in a disabled patient with systemic bleeding disorders.

Iatrogenic Vertebral Artery Injury During Anterior Cervical Spine Surgery : Report of Two Cases

  • Lee, Jae-Hyun;Lee, Jung-Kil;Joo, Sung-Pil;Kim, Soo-Han
    • Journal of Korean Neurosurgical Society
    • /
    • v.40 no.6
    • /
    • pp.450-454
    • /
    • 2006
  • The incidence of vertebral artery injury during the anterior approach to the cervical spine is rare, but potentially lethal. The authors describe two cases of vertebral artery injury during anterior cervical decompression surgery. In the first case, infection was the cause of the vertebral artery injury. During aggressive irrigation and pus drainage, massive bleeding was encountered, and intraoperative direct packing with hemostatic agents provided effective control of hemorrhage. Ten days after surgery, sudden neck swelling and mental deterioration occurred because of rebleeding from a pseudoaneurysm. In the second case, the vertebral artery was injured during decompression of cervical spondylosis while drilling the neural foramen. After intraoperative control of bleeding, the patient was referred to our hospital, and a pseudoaneurysm was detected by angiography four days after surgery. Both pseudoaneurysms were successfully occluded by an endovascular technique without any neurological sequelae. Urgent vertebral angiography, following intraoperative control of bleeding by hemostatic compression in cases of vertebral artery injury during anterior cervical decompression, should be performed to avoid life-threatening complications. Prompt recognition of pseudoaneurysm is mandatory, and endovascular treatment can be life saving.

THE EFFECTS OF SURFACE CONTAMINATION BY HEMOSTATIC AGENTS ON THE SHEAR BOND STRENGTH OF COMPOMER (지혈제 오염이 콤포머의 전단결합강도에 미치는 영향)

  • Heo, Jeong-Moo;Kwak, Ju-Seog;Lee, Hwang;Lee, Su-Jong;Im, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.2
    • /
    • pp.150-157
    • /
    • 2002
  • One of the latest concepts in bonding are "total etch", in which both enamel and dentin are etched with an acid to remove the smear layers, and "wet dentin" in which the dentin is not dry but left moist before application of the bonding primer Ideally the application of a bonding agent to tooth structure should be insensitive to minor contamination from oral fluids. Clinically, contaminations such as saliva, gingival fluid, blood and handpiece lubricant are often encountered by dentists during cavity preparation. The aim of this study was to evaluate the effect of contamination by hemostatic agents on shear bond strength of compomer restorations. One hundred and ten extracted human maxillary and mandibular molar teeth were collected. The teeth were removed soft tissue remnant and debris and stored in physiologic solution until they were used. Small flat area on dentin of the buccal surface were wet ground serially with 400, 800 and 1200 abrasive papers on automatic polishing machine. The teeth were randomly divided into 11 groups. Each group was conditioned as follows : Group 1: Dentin surface was not etched and not contaminated by hemostatic agents. Group 2: Dentin surface was not etched but was contaminated by Astringedent$^{\circledR}$(Ultradent product Inc., Utah, U.S.A.) Group 3: Dentin surface was not etched but was contaminated by Bosmin$^{\circledR}$(Jeil Pharm, Korea.). Group 4: Dentin surface was not etched but was contaminated by Epri-dent$^{\circledR}$(Epr Industries, NJ, U.S.A.). Group 5: Dentin surface was etched and not contaminated by hemostatic agents. Group 6: Dentin sorface was etched and contaminated by Astringedent$^{\circledR}$. Group 7 : Dentin surface was etched and contaminated by Bosmin$^{\circledR}$. Group 8: Dentin surface was etched and contaminated by Epri-dent$^{\circledR}$. Group 9: Dentin surface was contaminated by Astringedent$^{\circledR}$. The contaminated surface was rinsed by water and dried by compressed air. Group 10: Dentin surface was contaminated by Bosmin$^{\circledR}$. The contaminated surface was rinsed by water and dried by compressed air. Group 11 : Dentin surface was contaminated by Epri-dent$^{\circledR}$. The contaminated surface was rinsed by water and dried by compressed air. After surface conditioning, F2000$^{\circledR}$ was applicated on the conditoned dentin surface The teeth were thermocycled in distilled water at 5$^{\circ}C$ and 55$^{\circ}C$ for 1,000 cycles. The samples were placed on the binder with the bonded compomer-dentin interface parallel to the knife-edge shearing rod of the Universal Testing Machine(Zwick Z020, Zwick Co., Germany) running at a cross head speed or 1.0 mm/min. Group 2 showed significant decrease in shear bond strength compared with group 1 and group 6 showed significant decrease in shear bond strength compared with group 5. There were no significant differences in shear bond strength between group 5 and group 9, 10 and 11.

THE EFFECTS OF SURFACE CONTAMINATION ON THE SHEAR BOND STRENGTH OF COMPOMER

  • Heo, Jeong-Moo;Lee, Su-Jong;Im, Mi-Kyung
    • Proceedings of the KACD Conference
    • /
    • 2001.11a
    • /
    • pp.577-577
    • /
    • 2001
  • The lastest concepts in bonding are "total etch", in which both enamel and dentin are etched with an acid to remove the smear layers, and "wet dentin" in which the dentin is not blown dry but left moist before application of the bonding primer. Ideally, the application of a bonding agent to tooth structure should be insensitive to minor contamination from oral fluids. Clinically contaminations such as saliva, gingival fluid, blood and handpiece lubricant are often encountered by dentists during preparation of a restoration. The aim of this study was to evaluate the effect of contamination by hem-ostatic agents on shear bond strength of compomer restorations. One hundred and ten extracted human maxillary and mandibular molar teeth were collected. The teeth were cleaned from soft tissue remnant and debris and stored in physiologic solution until they were used. Small flat area on dentin of the buccal surface were wet ground serially with 400, 800 and 1200 abrasive paper on automatic polishing machine. The teeth were randomly divided into 11 groups. Each group was conditioned as follows: Group 1 : Dentin surface was not etched and not contaminated by hemostatic agents. Group2 : Dentin surface was not etched but was contaminated by Astringedent (Ultradent product Inc., Utah, U.S.A.). Group3 : Dentin surface was not etched but was contaminated by Bosmin (Jeil Phann, Korea.). Group4 : Dentin surface was not etched but was contaminated by Epri-dent (Epr Industries, NJ, U.S.A.). Group5: Dentin surface was etched and not contaminated by hemostatic agents. Group 6 : Dentin surface was etched and contaminated by Astringedent. Group7 : Dentin surface was etched and contaminated by Bosmin. Group8 : Dentin surface was etched and contaminated by Epri-dent. Group9 : Dentin surface was contaminated by Astringedent. The contaminated surface was rinsed by water and dried by compressed air. Group10 : Dentin surface was contaminated by Bosmin. The contaminated surface was rinsed by water aud dried by compresfed air. Group 11 : Dentin surface was contaminated by Epri-dent. The contaminated surface was rinsed by water and dried by compresfed air. After surface conditioning, F2000 was applicated on the conditoned dentin surface. The teeth were thermocycled in distilled water at $5^{\circ}C\;and\;55^{\circ}C$ for 1000 cycles. The samples were placed on the binder with the bonded compomer-dentin interface parallel to the lmife-edge shearing rod of the Universal testing machine(Zwick 020, Germany) running at a cross head speed of 1.0mmimin. There were no significant differences in shear bond strength between groups 1 and group 3 and 4, but group 2 showed significant decrease in shear bond strength compared with group 1. There were no significant differences in shear bond strength between group 5 and group 7 and 8, but group 6 showed significant decrease in shear bond strength compared with group 5. There were no significant differences in shear bond strength between group 5 and group 9, 10 and 11.

  • PDF