• 제목/요약/키워드: Heme Oxygenase-1

검색결과 349건 처리시간 0.022초

Heme Oxygenase-1 as a Potential Therapeutic Target for Hepatoprotection

  • Farombi, Ebenezer Olatunde;Surh, Young-Joon
    • BMB Reports
    • /
    • 제39권5호
    • /
    • pp.479-491
    • /
    • 2006
  • Heme oxygenase (HO), the rate limiting enzyme in the breakdown of heme into carbon monoxide (CO), iron and bilirubin, has recently received overwhelming research attention. To date three mammalian HO isozymes have been identified, and the only inducible form is HO-1 while HO-2 and HO-3 are constitutively expressed. Advances in unveiling signal transduction network indicate that a battery of redox-sensitive transcription factors, such as activator protein-1 (AP-1), nuclear factor-kappa B (NF-${\kappa}B$) and nuclear factor E2-related factor-2 (Nrf2), and their upstream kinases including mitogen-activated protein kinases play an important regulatory role in HO-1 gene induction. The products of the HO-catalyzed reaction, particularly CO and biliverdin/bilirubin have been shown to exert protective effects in several organs against oxidative and other noxious stimuli. In this context, it is interesting to note that induction of HO-1 expression contributes to protection against liver damage induced by several chemical compounds such as acetaminophen, carbon tetrachloride and heavy metals, suggesting HO-1 induction as an important cellular endeavor for hepatoprotection. The focus of this review is on the significance of targeted induction of HO-1 as a potential therapeutic strategy to protect against chemically-induced liver injury as well as hepatocarcinogenesis.

흰쥐 대뇌세포의 저산소증 모델에서 황금(黃芩)에 의한 heme oxygenase-1의 표현증가 (Upregulation of heme oxygenase-1 by Scutellaria baicalensis GEORGI Water-Extract in a Hypoxic Model of Cultured Rat Cortical Cells.)

  • 이원철;김완식;신길조;문일수;정승현
    • 생명과학회지
    • /
    • 제17권5호
    • /
    • pp.706-713
    • /
    • 2007
  • Scutellaria baicalensis GEORGI(SB) is used in oriental medicine for the treatment of incipient strokes. Although it has been reported that SB is neuroprotective in a hypoxia model, its mechanism is poorly understood. Here, we investigated the effect of SB on the modulation of heme oxygenase-1(HO-1), which has important biological roles in regulating mitochondrial heme protein turnover and in protecting against conditions such as hypoxia, neurodegenerative diseases, or sepsis. Rat cerebrocortical day In vitro(DIV)12 cells were grown in neurobasal medium. On DIV12 cells were treated with SB($20{\mu}g/ml$) and given a hypoxic shock ($2%\;O_2/5%\;CO_2,\;3\;hr$) on DIV14. In situ hybridization results revealed that SB upregulated HO-1 mRNA in neuronal dendrites in both normoxia and hypoxia(38.5% and 59.2%, respectively). At the protein level, SB upregulated HO-1 in the neuronal soma in both normoxia and hypoxia(22.4% and 15.7%, respectively). Interestingly, most significant increase was associated with astrocytes, which increased HO-1 protein by 77.5% compared to SB-untreated culture. These results indicate that SB upregulates both neuronal and glial HO-1 expression, which contributes to the neuroprotection efficacy in hypoxia).

RAW 264.7 세포에서 Heme Oxygenase-1 발현 유도를 통한 송절(松節) 약침액의 항염증 효능 (Pinus Densiflora Gnarl Extract for Pharmacopuncture Inhibits Inflammatory Responses through Heme Oxygenase-1 Induction in Lipopolysaccharide-Stimulated RAW264.7 Macrophages)

  • 이강파;문진영
    • Korean Journal of Acupuncture
    • /
    • 제29권1호
    • /
    • pp.37-46
    • /
    • 2012
  • Objectives : The gnarl of Pinus densiflora, called Songjeol in Korea, has been used as a medicinal herb for the treatment of inflammatory-related diseases such as arthralgia, myalgia and bruise. However, the molecular actions and mechanisms have not been clearly investigated. The aim of this study was to clarify the anti-inflammatory activity of Pinus densiflora gnarl pharmacopuncture (PDGP) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Methods : Cytotoxicity was assessed by XTT assay. The amount of nitric oxide (NO) production was determined by nitrite assay. The mRNA expressions of interleukin-$1{\beta}$ (IL-$1{\beta}$), interleukin-6 (IL-6), cyclooxygenase-2 (COX-2) and heme oxygenase-1 (HO-1) were analyzed by RT-PCR. Reactive oxidative species (ROS) generation was measured using the fluorescence microscopy. In addition, inducible nitric oxide synthase (iNOS) and redox factor-1 (Ref-1) protein expressions were detected by Western blotting. Results : PDGP inhibited NO production and ROS generation in LPS-stimulated RAW264.7 cells. At the mRNA level, PDGP suppressed IL-$1{\beta}$, IL-6 and COX-2 expression. On the other hand, PDGP induced HO-1 mRNA expression. Furthermore, PDGP suppressed iNOS and Ref-1 protein expression. Conclusions : This result suggests that PDGP can act as a suppressor agent on NO and iNOS through induction of HO-1, and play an useful role in blocking inflammatory responses.

15d-PGJ2 inhibits NF-κB and AP-1-mediated MMP-9 expression and invasion of breast cancer cell by means of a heme oxygenase-1-dependent mechanism

  • Jang, Hye-Yeon;Hong, On-Yu;Youn, Hyun Jo;Kim, Min-Gul;Kim, Cheorl-Ho;Jung, Sung Hoo;Kim, Jong-Suk
    • BMB Reports
    • /
    • 제53권4호
    • /
    • pp.212-217
    • /
    • 2020
  • Activation of peroxisome proliferator-activated receptor γ (PPARγ) serves as a key factor in the proliferation and invasion of breast cancer cells and is a potential therapeutic target for breast cancer. However, the mechanisms underlying this effect remain largely unknown. Heme oxygenase-1 (HO-1) is induced and over-expressed in various cancers and is associated with features of tumor aggressiveness. Recent studies have shown that HO-1 is a major downstream target of PPARγ. In this study, we investigated the effects of induction of HO-1 by PPARγ on TPA-induced MMP-9 expression and cell invasion using MCF-7 breast cancer cells. TPA treatment increased NF-κB /AP-1 DNA binding as well as MMP-9 expression. These effects were significantly blocked by 15d-PGJ2, a natural PPARγ ligand. 15d-PGJ2 induced HO-1 expression in a dose-dependent manner. Interestingly, HO-1 siRNA significantly attenuated the inhibition of TPA-induced MMP-9 protein expression and cell invasion by 15d-PGJ2. These results suggest that 15d-PGJ2 inhibits TPA-induced MMP-9 expression and invasion of MCF-7 cells by means of a heme oxygenase-1-dependent mechanism. Therefore, PPARγ/HO-1 signaling-pathway inhibition may be beneficial for prevention and treatment of breast cancer.

마치현 70% 에탄올 추출물의 Heme Oxygenase-1 발현을 통한 산화적 스트레스에 대한 사람각질형성세포 보호 효과 (The Cytoprotective Action of Portulaca oleracea 70% EtOH Extracts via the Heme Oxygenase-1 on Hydrogen Peroxide-induced Oxidative Stress in Human Keratinocyte HaCaT Cells)

  • 서승희;정길생
    • 생약학회지
    • /
    • 제46권2호
    • /
    • pp.116-122
    • /
    • 2015
  • Keratinocytes are first barrier against outer challenges on skin. However, it is still largely unknown about effective protectors against ultraviolet B (UVB), and oxidative stress in human keratinocyte, HaCaT cells. Inducible heme oxygenase (HO)-1 acts against oxidants that are thought to play a role in the pathogenesis of skin disorders. Therefore, the purpose of this study was to evaluate the effect of Portulaca oleracea 70% EtOH extracts against hydrogen peroxide (H2O2)-induced oxidative stress in human keratinocytes, HaCaT cells. P. oleracea 70% EtOH extracts showed the potent protective effects on H2O2-induced toxicity by induced the expression of HO-1 in human keratinocyte, HaCaT cells. Furthermore, P. oleracea 70 % EtOH extracts caused the nuclear accumulation of nuclear factor E2-related factor 2 (Nrf2) in human keratinocytes, HaCaT cells. In addition, we found that treatment with c-Jun N-terminal kinase (JNK) inhibitor (SP600125) reduced P. oleracea 70% EtOH extracts-induced HO-1 expression, and JNK inhibitor (SP600125) also inhibited protective effects by P. oleracea 70% EtOH extracts. Therefore, these results suggest that P. oleracea 70 % EtOH extracts increases cellular resistance to H2O2-induced oxidative injury in human keratinocyte, HaCaT cells, presumably through JNK pathway-Nrf2-dependent HO-1 expression.

희렴 추출물의 Heme Oxygenase-1 발현을 통한 생쥐 해마 유래 HT22 세포 보호효과 (Involvement of Heme Oxygenase-1 Induction in the Neuroprotective Activitiy of Extract of Siegesbeckia Herba in Murine Hippocampal HT22 Cells)

  • 임남경;이동성;여선정;김윤철;정길생
    • 생약학회지
    • /
    • 제43권4호
    • /
    • pp.316-322
    • /
    • 2012
  • Siegesbeckia Herba is known to have anti-oxidant, anti-inflammatory, anti-allergic and anti-tumor. The objective of this study is to explore the neuroprotective effect of Siegesbeckia Herba against glutamate-induced oxidative stress in mouse hippocampal HT22 cells. Siegesbeckia Herba 70% ethanol extract and solvent fractions have the potent neroprotective effects on glutamate-induced nerotoxicity by induced the expression of heme oxygenase (HO)-1 in the mouse hippocampal HT22 cells. Especially, ethyl acetate fraction showed higher protective effect. In HT22 cell, Siegesbeckia Herba ethyl acetate fraction makes the nuclear accumulation of Nrf2. Further, we found that treatment with c-JUN N-terminal kinase (JNK) inhibitor (SP600125) reduced Siegesbeckia Herba ethyl acetate fraction induced HO-1 expression and Siegesbeckia Herba ethyl acetate fraction also increased JNK phosphorylation. In conclusion, the ethyl acetate fraction of 70% ethanol extract of Siegesbeckia Herba significantly protect glutamate-induced oxidative damage by induction of HO-1 via Nrf2 and JNK pathway in mouse hippocampal HT22. Taken together these finding suggest that Siegesbeckia Herba ethyl acetate fraction good source for taking active compounds and may be a potential therapeutic for brain disorder by targeting the oxidative stress of neuronal cell.

Ischemia/reperfusion Lung Injury Increases Serum Ferritin and Heme Oxygenase-1 in Rats

  • Park, Yoon-Yub
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권3호
    • /
    • pp.181-187
    • /
    • 2009
  • Intestinal ischemia/reperfusion (I/R) is one of common causes of acute lung injury (ALI). Early and accurate diagnosis of patients who are like to develop serious acute respiratory distress syndrome (ARDS) would give a therapeutic advantage. Ferritin and heme oxygenase-1 (HO-1) are increased by oxidative stress and are potential candidates as a predictive biomarker of ARDS. However, the mechanisms responsible for the increases of ferritin and HO-1, and their relationship to ALI, are unclear. In order to elucidate the interactions between ferritin and HO-1, we studied the changes in ferritin and HO-1 levels in serum and bronchoalveolar lavage (BAL) fluid after intestinal I/R injury in rats. Leukocyte number and protein contents in BAL fluid were elevated following I/R, and the increases were attenuated by mepacrine pretreatment. Both serum ferritin and HO-1 concentrations were progressively elevated throughout the 3 h observation period. Mepacrine pretreatment attenuated the increase of serum and BAL fluid ferritin concentrations, but did not suppress the increase of serum HO-1. Moreover, BAL fluid HO-1 levels did not change after I/R or after mepacrine pretreated I/R compared with sham rats. Unlike ferritin, HO-1 levels are not exactly matched with the ALI. Therefore, there might be a different mechanism between the changes of ferritin and HO-1 in intestinal I/R-induced ALI model.

Role of heme oxygenase-1 expression by dietary phytoconstituents: A nutritional cytoprotective strategy for human diseases

  • Lee, Seung Eun;Park, Yong Seek
    • 셀메드
    • /
    • 제3권1호
    • /
    • pp.1.1-1.7
    • /
    • 2013
  • The present review investigates the role of the cytoprotective enzyme heme oxygenase-1 (HO-1) in human diseases and explores strategies for its clinical use. In recent years, there has been a growing evidence, for the beneficial effects of some phytoconstituents via induction of HO-1 expression, contained in commonly used spices, fruits, and herbs, in preventing various pathologic conditions, including cancer, diabetes, and cardiovascular diseases. HO-1 catalyzes the rate-limiting step in heme catabolism to generate ferrous iron, carbon monoxide, and biliverdin. HO-1 is reported to play crucial roles in cellular protection, such as anti-inflammatory, anti-proliferative and anti-apoptotic effects. These evidences indicate that HO-1 may functions as a potential therapeutic target in various human diseases. The article highlights the current status of the development of the HO-1 modulation pathway using dietary phytoconstituents.

Heme Oxygenase-1(HO-1) induction by UVB(290-320nm) radiation in ICR mice

  • Choi, Wook-Hee;Kim, Tae-Hwan;Ahn, Ryoung-Me
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2005년도 가을학술대회
    • /
    • pp.166-168
    • /
    • 2005
  • The induction of heme oxygenase-1(HO-1) by ultraviolet(UV) radiation provides a protective defense against oxidative stress, and has been well demonstrated in UVA-irradiated skin, but not UVB. In this study in mice, we show that the UVB(290-320nm) radiation can be attributed to the induction of cutaneous heme oxygenase-1. The expression of HO-1 mRNA was assessed in vivo by the reverse transcription-polymerase chain reaction (RT-PCR) analysis, and HO-1 enzyme activity was measured in microsomal preparation from irradiated mice. The mRNA level of HO-1 increases in liver and skin from 24h to 72h after UVB($3KJ/m^3$) radiation. The results of gene expression were same pattern of HO enzyme activity in skin, but not in liver. HO-1 mRNA in liver resulted in a progressive increase to 96h after UVB radiation, but HO activity in liver increased to 48h. This finding indicates that UVB radiation is an important inducer of HO-1 and increases in HO activity may protect tissues directly or indirectly from oxidative stress.

  • PDF