• 제목/요약/키워드: Helpfulness Votes

검색결과 7건 처리시간 0.025초

온라인 리뷰의 경제적 효과, 유용성과 유용성 투표수에 영향을 주는 결정요인 (The Determinant Factors Affecting Economic Impact, Helpfulness, and Helpfulness Votes of Online)

  • 이상재;최준연;최진호
    • 한국IT서비스학회지
    • /
    • 제13권1호
    • /
    • pp.43-55
    • /
    • 2014
  • More and more people are gravitating to reading products reviews prior to making purchasing decisions. As a number of reviews that vary in usefulness are posted every day, much attention is being paid to measuring their helpfulness. The goal of this paper is to investigate firstly various determinants of the helpfulness of reviews, and intends to examine the moderating effect of product type, i.e., search or experience goods on the product sales, helpfulness and helpfulness votes of online reviews. The determinants include product data, review characteristics, and textual characteristics of reviews. The results indicate that the direct effect exists for the determinants of product sales, helpfulness, and helpfulness votes. Further, the moderating effects of product type exist for these determinants on three dependent variables. The results of study will identify helpful online review and design review sites effectively.

의사결정나무를 활용한 온라인 소비자 리뷰 평가에 영향을 주는 핵심 키워드 도출 연구: 별점과 좋아요를 중심으로 (Core Keywords Extraction forEvaluating Online Consumer Reviews Using a Decision Tree: Focusing on Star Ratings and Helpfulness Votes)

  • 민경수;유동희
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제32권3호
    • /
    • pp.133-150
    • /
    • 2023
  • Purpose This study aims to develop classification models using a decision tree algorithm to identify core keywords and rules influencing online consumer review evaluations for the robot vacuum cleaner on Amazon.com. The difference from previous studies is that we analyze core keywords that affect the evaluation results by dividing the subjects that evaluate online consumer reviews into self-evaluation (star ratings) and peer evaluation (helpfulness votes). We investigate whether the core keywords influencing star ratings and helpfulness votes vary across different products and whether there is a similarity in the core keywords related to star ratings or helpfulness votes across all products. Design/methodology/approach We used random under-sampling to balance the dataset. We progressively removed independent variables based on decreasing importance through backwards elimination to evaluate the classification model's performance. As a result, we identified classification models that best predict star ratings and helpfulness votes for each product's online consumer reviews. Findings We have identified that the core keywords influencing self-evaluation and peer evaluation vary across different products, and even for the same model or features, the core keywords are not consistent. Therefore, companies' producers and marketing managers need to analyze the core keywords of each product to highlight the advantages and prepare customized strategies that compensate for the shortcomings.

설명가능한 그래프 신경망을 활용한 리뷰 콘텐츠 기반의 유용성 예측모형 (The Prediction of the Helpfulness of Online Review Based on Review Content Using an Explainable Graph Neural Network)

  • 김은미;야오즈옌;홍태호
    • 지능정보연구
    • /
    • 제29권4호
    • /
    • pp.309-323
    • /
    • 2023
  • 온라인 리뷰의 역할이 중요해짐에 따라 유용한 리뷰를 선별하기 위해 많은 연구들이 이루어져 왔다. 유용한 리뷰는 고객들이 유용하다고 인지하는 리뷰이며, 평점, 리뷰길이, 리뷰내용 등에 영향을 받는 것으로 많은 연구에서 검증되었다. 유용한 리뷰는 소비자들의 투표에 의한 '좋아요' 수에 의해 결정되며 유용성 투표가 많을수록 소비자의 구매의사결정에 중요한 영향을 미치는 것으로 간주된다. 그러나 최근에 작성되어 많은 고객들에게 노출되지 않은 리뷰는 상대적으로 '좋아요' 수가 적을 수 있으며, 투표에 응하지 않아 '좋아요' 수가 없을 수도 있다. 따라서 유용한 리뷰를 판단하기 위해 '좋아요' 수에 의존하기 보다는 리뷰 내용을 기반으로 유용한 리뷰를 분류하고자 한다. 리뷰의 텍스트는 리뷰 유용성에 가장 큰 영향을 미치는 요인으로, 토픽 모델링, 감정분석 등 텍스트 마이닝 기법을 적용하여 리뷰 텍스트에 포함된 콘텐츠와 감정의 영향을 다양하게 분석하고 있다. 본 연구에서는 글로벌 영화정보 사이트인 IMDb의 영화리뷰를 활용하여 리뷰 콘텐츠 기반의 리뷰 유용성 예측모형을 제안한다. 설명가능한 그래프 신경망인 GNN(Graph Neural Network)을 적용하여 리뷰 유용성 예측모형을 구축하고, 설명가능한 인공지능을 통해 예측모형의 한계인 모형의 해석에 대한 문제를 해결한다. 설명가능한 그래프 신경망은 리뷰들 간의 연결관계도 확인할 수 있어 유용한 리뷰 또는 유용하지 않은 리뷰에 대해 보다 신뢰할 수 있는 정보를 제공할 수 있을 것이라 기대한다.

Destinations analytics with massive tourist-generated content: Applying the Communication-Persuasion Paradigm

  • Hlee, Sun-Young;Ham, Ju-Yeon;Chung, Nam-Ho
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제27권3호
    • /
    • pp.203-225
    • /
    • 2018
  • Purpose This study investigated the impact of review language style (affective vs. cognitive) on review helpfulness and the moderating effects of the types of attractions in the relationships between the review language and its helpfulness. Design/methodology/approach This study investigates the impact of review language style (affective vs. cognitive) on review helpfulness and the moderating effects of the types of attractions in the relationships between the review language and its helpfulness. This study selected two hedonic and utilitarian attractions (Hedonic: Brandenburg Gate, Utilitarian: Peragamon Museum) located in Berlin. A total of 3,320 reviews was collected from TripAdvisor. We divided online reviews posted for these places into reviews with more affective language and with more cognitive language by using the LIWC. Then, we investigated the impact of language effect on review helpfulness across the attraction type. Findings The findings suggest that peers tend to judge more helpful toward cognitive language in attraction reviews regardless of attraction type. This study found that peers tend to perceive more helpful toward cognitive review in utilitarian attractions. Even though there was an interaction effect between review language and attraction type, in hedonic attractions, the influence of cognitive language was reduced, but still cognitive reviews would get more helpful votes.

텍스트 마이닝을 활용한 고객 리뷰의 유용성 지수 개선에 관한 연구 (A Study on Classifications of Useful Customer Reviews by Applying Text Mining Approach)

  • 이홍주
    • 한국IT서비스학회지
    • /
    • 제14권4호
    • /
    • pp.159-169
    • /
    • 2015
  • Customer reviews are one of the important sources for purchase decision makings in online stores. Online stores have tried to provide useful reviews in product pages to customers. To assess the usefulness of customer reviews before other users have voted enough on the reviews, diverse aspects of reviews were utilized in prevous studies. Style and semantic information were utilized in many studies. This study aims to test diverse alogrithms and datasets for identifying a proper classification method and threshold to classify useful reviews. In particular, most researches utilized ratio type helpfulness index as Amazon.com used. However, there is another type of usefulness index utilized in TripAdviser.com or Yelp.com, count type helpfulness index. There was no proper threshold to classify useful reviews yet for count type helpfulness index. This study used reivews and their usefulness votes on restaurnats from Yelp.com to devise diverse datasets and applied text mining approaches to classify useful reviews. Random Forest, SVM, and GLMNET showed the greater values of accuracy than other approaches.

온라인 리뷰의 감성과 독해 용이성이 리뷰 유용성에 미치는 영향: 가산형 리뷰 유용성 정보 활용 (The Effects of Sentiment and Readability on Useful Votes for Customer Reviews with Count Type Review Usefulness Index)

  • 루스 안젤리 크루즈;이홍주
    • 지능정보연구
    • /
    • 제22권1호
    • /
    • pp.43-61
    • /
    • 2016
  • 온라인 쇼핑몰의 상품에 대한 고객 리뷰는 구매자들의 구매 의사결정에 영향을 미치고 있으며 중요한 구전효과의 원천과 의사결정의 정보 원천의 역할을 하고 있다. 한 제품에 대한 리뷰가 무척 많기에 온라인 쇼핑몰들은 고객 리뷰 평가 방안을 도입하였고, 이를 통해 고객들에게 유용하리라고 판단되는 리뷰들을 걸러서 보여주거나 강조할 수 있게 되었다. 리뷰 평가 방안은 해당 리뷰가 도움이 되었는지 혹은 도움이 되지 않았는 지를 리뷰를 읽은 고객이 평가하게 하는 방안이다. Amazon.com은 고객 평가를 바탕으로 총 투표 수 중에서 유용하다는 투표 수의 비율을 리뷰 유용성 지표로 삼고 있으며, Yelp.com은 유용하다는 투표 수 자체를 유용성 지표로 삼고 있다. 본 연구는 고객 리뷰의 감성과 독해 용이성이 리뷰의 유용성에 미치는 영향을 파악하고자 한다. Amazon.com의 고객 리뷰 자료를 활용하여 비율형 유용성 지표를 종속변수로 하는 유사한 연구들이 수행되어 왔다. 본 연구에서는 Yelp.com의 리뷰 자료를 활용하여 가산형 리뷰 유용성 지표인 경우에도 동일한 효과가 존재하는지를 검토하고자 한다. Yelp.com의 음료와 음식 카테고리에 해당하는 업종에 대한 리뷰를 자료로 활용하였으며, 점포의 명성과 인기도 데이터를 파악할 수 있는 170,294개의 리뷰를 분석에 활용하였다. 분석결과는 리뷰의 긍정 정도는 유용 투표수를 늘리는데 음의 영향을 미쳤다. 평가가 긍정적인 리뷰에서는 음의 영향관계가 유의 하였으나, 평가가 부정적인 리뷰에서는 리뷰의 긍정 정도가 유용 투표 수에 미치는 영향은 유의하지 않았다. 독해 용이성은 리뷰가 읽기 어려울 수록 높은 값을 갖으며, 독해의 어려운 정도는 유용 투표수 획득에 음의 영향을 미쳤다. 독해 용이성은 긍정 리뷰, 부정 리뷰 관계없이 모두 음의 영향을 미치는 것으로 분석되었다. 이 결과는 유용 투표수가 0인 리뷰를 포함하여 영과잉 음이항 회귀분석을 수행한 경우와 유용 투표수가 0인 리뷰를 제외하고 음이항 회귀분석을 수행한 경우 모두 동일하게 파악되었다.

중립도 기반 선택적 단어 제거를 통한 유용 리뷰 분류 정확도 향상 방안 (Increasing Accuracy of Classifying Useful Reviews by Removing Neutral Terms)

  • 이민식;이홍주
    • 지능정보연구
    • /
    • 제22권3호
    • /
    • pp.129-142
    • /
    • 2016
  • 전자상거래에서 소비자들의 구매 의사결정에 판매 제품을 이미 구매하여 사용한 고객의 리뷰가 중요한 영향을 미치고 있다. 전자상거래 업체들은 고객들이 제품 리뷰를 남기도록 유도하고 있으며, 구매고객들도 적극적으로 자신의 경험을 공유하고 있다. 한 제품에 대한 고객 리뷰가 너무 많아져서 구매하려는 제품의 모든 리뷰를 읽고 제품의 장단점을 파악하는 것은 무척 힘든 일이 되었다. 전자상거래 업체들과 연구자들은 텍스트 마이닝을 활용하여 리뷰들 중에서 유용한 리뷰들의 속성을 파악하거나 유용한 리뷰와 유용하지 않은 리뷰를 미리 분류하는 노력을 수행하고 있다. 고객들에게 유용한 리뷰를 필터링하여 전달하는 방안이다. 본 연구에서는 문서-단어 매트릭스에서 단어의 제거 기준으로 온라인 고객 리뷰가 유용한 지, 그렇지 않은지를 구분하는 문제에서 단어들이 유용 리뷰 집합과 유용하지 않은 리뷰집합에 중복하여 등장하는 정도를 측정한 중립도를 제시한다. 제시한 중립도를 희소성과 함께 분석에 활용하여 제거할 단어를 선정한 후에 각 분류 알고리즘의 성과를 비교하였다. 최적의 성과를 보이는 중립도를 찾았으며, 희소성과 중립도에 따라 단어를 선택적으로 제거하였다. 실험은 Amazon.com의 'Cellphones & Accessories', 'Movies & TV program', 'Automotive', 'CDs & Vinyl', 'Clothing, Shoes & Jewelry' 제품 분야 고객 리뷰와 사용자들의 리뷰에 대한 평가를 활용하였다. 전체 득표의 수가 4개 이상인 리뷰 중에서 제품 카테고리 별로 유용하다고 판단되는 1,500개의 리뷰와 유용하지 않다고 판단되는 1,500개의 리뷰를 무작위로 추출하여 연구에 사용하였다. 데이터 집합에 따라 정확도 개선 정도가 상이하며, F-measure 기준으로는 두 알고리즘에서 모두 희소성과 중립도에 기반하여 단어를 제거하는 방안이 더 성과가 높았다. 하지만 Information Gain 알고리즘에서는 Recall 기준으로는 5개 제품 카테고리 데이터에서 언제나 희소성만을 기준으로 단어를 제거하는 방안의 성과가 높았으며, SVM에서는 전체 단어를 활용하는 방안이 Precision 기준으로 성과가 더 높았다. 따라서, 활용하는 알고리즘과 분석 목적에 따라서 단어 제거 방안을 고려하는 것이 필요하다.