• 제목/요약/키워드: Helocobacter phylori SS1-mouse model

검색결과 1건 처리시간 0.015초

Evaluation of Factors that Can Affect Protective Immune Responses Following Oral Immunization of Recombinant Helicobacter pylori Urease Apoenzyme

  • Kim, Jang-Seoung;Chang, Ji-Hoon;Park, Eun-Jeong;Chung, Soo-Il;Yum, Jung-Sun
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권6호
    • /
    • pp.865-872
    • /
    • 2000
  • Helocobacter phylori is the major cause of gastritis, peptic ulcer, and a principal risk factor for gastric cancer. As the firs step towards a vaccine against H. pylori infection, Hy.pylori urease was expressed and purified as a recombinant apoenzyme (rUrease) in E. coli. In order to develop an effective immunization protocol using rUrease, the host immune responses were evaluated after the oral immunization of mice with rUrease preparations plus cholera toxin relative to various conditions, such as the physical nature of the antigen, the frequency of the booster immunization, the dose of the antigen, and the route of administration. The protective efficacy was assessed using a quantitative culture following an H. pylori SS1 challenge. It was demonstrated that rUrease, due to its particulated nature, was more superior than the UreB subunit as a vaccine antigen. The oral immunization of rUrease elicited significant systemic and secretory antibody responses, and activated predominantly Th2-type cellular responses. The bacterial colonization was significantly reduced (~100-fold) in those mice immunized with three or four weekly oran doses of rUrease plus cholera toxin (p<0.05), when compared to the non-immunized/challenged controls. The protection correlated well with the elicited secretory IgA level against rUrease, and these secretory antibody responses were highly dependent on the frequency of the booster immunization, yet unaffected by the dose of the antigen (25-200$\mu\textrm{g}$). These results demonstrate the remarkable potential of rUrease as a vaccine antigen, thereby strengthening the possibility of developing an H. pylori vaccine for humans.

  • PDF