• Title/Summary/Keyword: Helix 0

Search Result 124, Processing Time 0.033 seconds

The Effect of Drill Helix Angle, Point angle, and Cutting Conditions on the Drilling Performance (드릴의 선단각, 나선각 및 가공조건이 가공성에 미치는 영향)

  • 이영식
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.138-146
    • /
    • 1997
  • The optimal drill helix angle, point angle, and cutting conditions are recommended in the study so as to maximize the drilling performance by investigating the experimental reaults concerning with the state of chip formation, roundness of machined holes, and geometry of projected burr at hole exit, which are examined under the conditions of various helix angles, drill point angles of twist drill, cutting speeds, and feeds in operional parameters. In the easiness of chip escape, the helical type of chip is producted when a helix angle is 30$^{\circ}$, drill point angle 118$^{\circ}$, 140$^{\circ}$and feed is st between 0.1 and 0.15mm/rev. Roundness of machined hole is improved when the helix angle is 37$^{\circ}$, drill point angle is 118$^{\circ}$, and feed is 0.15mm/rev. The height of projected burr at the button of machined hole increases when the drill point angle and helix angle becomes large.

  • PDF

A study on the surface roughness of STD 11 material according to the helix angle of ball endmill (볼 엔드밀의 헬릭스 각도에 따른 STD 11 소재의 표면 거칠기에 관한 연구)

  • Jong-Su Kim
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.33-39
    • /
    • 2023
  • The ball end mill is a type of cutting tool that is widely used to process complex mold shapes including aspheric surfaces. Unlike the flat end mill in which the cutting edge is formed on the cylindrical handle, the cutting edge is formed from the cylindrical handle to the hemispherical shape, which is advantageous for processing curved shapes. However, since the cutting speed continuously changes during machining due to the helix angle of the cutting edge or the machining inclination angle, it is difficult to obtain a precise machined surface. Therefore, in this paper, machining was performed while changing the helix angle of the ball end mill and the angle of the machining slope under the same cutting conditions for STD 11 material, which is widely used as a mold material. Through this, the effect of the two variables on the roughness of the machined surface was analyzed. As a result, if the helix angle was 0 degrees, it showed the best surface roughness of Ra. 0.16 ㎛. When the helix angle was 20 degrees, the best surface roughness of Ra. 0.18 ㎛ was occurred.

  • PDF

Cutting Characteristics of Ball-end Mill with Different Helix Angle (볼 엔드밀 헬릭스 각에 따른 절삭 특성)

  • Cho, Chul Yong;Ryu, Shi Hyoung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.395-401
    • /
    • 2014
  • Development of five axis tool grinding machine and CAD/CAM systems increase tool design flexibility. In this research, investigated are cutting characteristics of ball-end mill with different helix angle. Special WC ball-end mills with $0^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$ helix angles are designed and used in various cutting tests. Machining performance according to helix angle variation is evaluated from cutting forces, surface roughness, tool wear, produced chip shape, and vibration characteristics. The ball-end mill with $10^{\circ}$ helix angle shows the best cutting performance due to appropriate chip load distribution and smooth chip flow. This research can be used for cutting edge geometry optimization and novel design of ball-end mill.

A Design of Dual-band Stacked Helix Monopole Antenna with Parasitic Patch (기생 패치를 이용한 이중 대역 적층형 헬릭스 모노폴 안테나 설계)

  • Jung, Jin-Woo;Kim, Kyoung-Keun;Lee, Hyeon-Jin;Lim, Yeong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.1
    • /
    • pp.155-161
    • /
    • 2007
  • This paper presents the design simulation, implementation, and measurement of a miniaturized PCS / Satellite DMB dual-band stacked mompole antenna with a parasitic patch for mobile communication terminals. A stacked helix is realized by using a via hole with height of 0.4 mm and a diameter of 0.35 mm to connect upper- and lower-layer helix sections for a reduction of the dimensions of the antenna. In addition the stacked helix chip antenna is interleaved with a parasitic patch to achieve two different radiation modes. The ratio of the first frequency and the second frequency vary with the geometrical parameter of the parasitic patch. The fabricated antenna uses FR-4 substrate with a relative permittivity of 4.2. Its dimensions are $15.5{\times}7.6{\times}0.4 mm^3$. The measured impedance bandwidths (VSWR<2) are 240 and 250 MHz at the operating frequencies, respectively.

Membrane Topology of Helix 0 of the Epsin N-terminal Homology Domain

  • Kweon, Dae-Hyuk;Shin, Yeon-Kyun;Shin, Jae Yoon;Lee, Jong-Hwa;Lee, Jung-Bok;Seo, Jin-Ho;Kim, Yong Sung
    • Molecules and Cells
    • /
    • v.21 no.3
    • /
    • pp.428-435
    • /
    • 2006
  • Specific interaction of the epsin N-terminal homology(ENTH) domain with the plasma membrane appears to bridge other related proteins to the specific regions of the membrane that are invaginated to form endocytic vesicles. An additional $\alpha$-helix, referred to as helix 0 (H0), is formed in the presence of the soluble ligand inositol-1,4,5-trisphosphate [$Ins(1,4,5)P_3$] at the N terminus of the ENTH domain (amino acid residues 3-15). The ENTH domain alone and full-length epsin cause tubulation of liposomes made of brain lipids. Thus, it is believed that H0 is membrane-inserted when it is coordinated with the phospholipid phosphatidylinositol-4,5-bisphosphate [$PtdIns(4,5)P_2$], resulting in membrane deformation as well as recruitment of accessory factors to the membrane. However, formation of H0 in a real biological membrane has not been demonstrated. In the present study, the membrane structure of H0 was determined by measurement of electron paramagnetic resonance (EPR) nitroxide accessibility. H0 was located at the phosphate head-group region of the membrane. Moreover, EPR line-shape analysis indicated that no pre-formed H0-like structure were present on normal acidic membranes. $PtdIns(4,5)P_2$ was necessary and sufficient for interaction of the H0 region with the membrane. H0 was stable only in the membrane. In conclusion, the H0 region of the ENTH domain has an intrinsic ability to form H0 in a $PtdIns(4,5)P_2$-containing membrane, perhaps functioning as a sensor of membrane patches enriched with $PtdIns(4,5)P_2$ that will initiate curvature to form endocytic vesicles.

Analysis and Design of Stacked Helix Chip Antenna (적층형 헬릭스 칩 안테나의 해석과 설계)

  • Jung, Jin-Woo;Kim, Yu-Seon;Lee, Hyeon-Jin;Lim, Yeong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.11 s.353
    • /
    • pp.216-220
    • /
    • 2006
  • One of the approaches for reducing the size of the quarter wavelength monopole antenna is the helix and the stacked structure. This paper presents a formula for the relationship between the geometrical parameter and the operating frequency of a slacked helix chip antenna. The stacked helix chip antenna was designed for PCS/IMT-2000 dual-bands operation. The fabricated antenna uses an FR-4 substrate with relative permittivity of 4.2, and its dimensions are $15{\times}7.5{\times}0.4mm^3$. The measured impedance bandwidth (VSWR<2) is 400MHz at the operating frequency.

A New Kind of Slant Helix in Lorentzian (n + 2)- Spaces

  • Ates, Fatma;Gok, Ismail;Ekmekci, Faik Nejat
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.1003-1016
    • /
    • 2016
  • In this paper, we introduce a new kind of slant helix for null curves called null $W_n$-slant helix and we give a definition of new harmonic curvature functions of a null curve in terms of $W_n$ in (n + 2)-dimensional Lorentzian space $M^{n+2}_1$ (for n > 3). Also, we obtain a characterization such as: "The curve ${\alpha}$ s a null $W_n$-slant helix ${\Leftrightarrow}H^{\prime}_n-k_1H_{n-1}-k_2H_{n-3}=0$" where $H_n,H_{n-1}$ and $H_{n-3}$ are harmonic curvature functions and $k_1,k_2$ are the Cartan curvature functions of the null curve ${\alpha}$.

Changes in Solution Properties of Poly(trans-5-methylproline) During Mutarotation (Poly(trans-5-methylproline)의 변광회전에 따른 용액의 성질변화)

  • Han Man Jung
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.7-14
    • /
    • 1979
  • Changes in CD, ORD and uv-spectra during the mutarotation of poly(trans-5-methyl-L-proline) (PTMP) were studied. The forward mutarotion of PTMP occurred in strong organic acids and trifluoroethanol, while the reverse mutarotation was observed by dilution of the trifluoroethanol solution with excess aliphatic alcohols. The changes in CD, ORD and uv-spectra during the forward and reverse mutarotation proceeded paralell to those found for the mutarotation of polyproline. The chemical shift of the ${\alpha}CH-$proton was shifted downfield about 0.3 ppm during the forward mutarotation. The reduced viscosity for the forward mutarotation increased from 0.15 to 0.26 (dl/g) during 5 days. The equilibrium between form I and form II was estabilished in an appropriate solvent mixture. All changes in solution properties mentioned above are similar to those found for polypoline. These results support that the two forms of PTMP are the same conformations as polyproline form I and form II, i. e., a right-handed helix with all cis amide bonds and a lefthanded helix with all trans amide bonds.

  • PDF

Chain Dimensions and Intrinsic Viscosities of Polypeptides in the Helix-Coil Transition Region

  • Jong-Ryul Kim;Tai-Kyue Ree
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.1
    • /
    • pp.36-41
    • /
    • 1983
  • An equation is derived which correlates the unperturbed dimensions $_0$ of polypeptides with the helical contents in the helix-coil transition region by using a simple model of a polypeptide chain. The model is a chain of connected balls which represent the repeating units, -CO-NH-CHR-, based on the fact that the repeating unit has a plane structure. The changing trend of the expansion factor ${\alpha}_{\eta}$ in the transition region is connected with the helical content $f_H$. The intrinsic viscosities [${\eta}$] of polypeptides are calculated from the unperturbed dimensions and the ${\alpha}_{\eta}$ factors. The above calculated results concerning $_0$ and [${\eta}$] are compared with other authors' theoretical and experimental results. From the comparison, we concluded that our theory explains better the chain dimensional behavior of polypeptides in the helix-coil transition region than others.

Shape Optimization of Internally Finned Tube with Helix Angle (나선형 핀이 내부에 부착된 관의 형상최적화)

  • Kim, Yang-Hyun;Ha, Ok-Nam;Lee, Ju-Hee;Park, Kyoung-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.7
    • /
    • pp.500-511
    • /
    • 2007
  • The Optimal solutions of the design variables in internally finned tubes have been obtained for three-dimensional periodically fully developed turbulent flow and heat transfer. For a trapezoidal fin profile, performances of the heat exchanger are determined by considering the heat transfer rate and pressure drop, simultaneously, that are interdependent quantities. Therefore, Pareto frontier sets of a heat exchanger can be acquired by integrating CFD and a multi-objective optimization technique. The optimal values of fin widths $(d_1,\;d_2)$, fin height(h) and helix angle$(\gamma)$ are numerical1y obtained by minimizing the pressure loss and maximizing the heat transfer rate within ranges of $d_1=0.5\sim1.5mm$, $d_2=0.5\sim1.5mm$, $h=0.5\sim1.5mm$, and $\gamma=0\sim20^{\circ}$. For this, a general CFD code and a global genetic algorithm(GA) are used. The Pareto sets of the optimal solutions can be acquired after $30^{th}$ generation.