• Title/Summary/Keyword: Helium gas

Search Result 313, Processing Time 0.017 seconds

A REVIEW OF HELIUM GAS TURBINE TECHNOLOGY FOR HIGH-TEMPERATURE GAS-COOLED REACTORS

  • No, Hee-Cheon;Kim, Ji-Hwan;Kim, Hyeun-Min
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.21-30
    • /
    • 2007
  • Current high-temperature gas-cooled reactors (HTGRs) are based on a closed Brayton cycle with helium gas as the working fluid. Thermodynamic performance of the axial-flow helium gas turbines is of critical concern as it considerably affects the overall cycle efficiency. Helium gas turbines pose some design challenges compared to steam or air turbomachinery because of the physical properties of helium and the uniqueness of the operating conditions at high pressure with low pressure ratio. This report present a review of the helium Brayton cycle experiences in Germany and in Japan. The design and availability of helium gas turbines for HTGR are also presented in this study. We have developed a new throughflow calculation code to calculate the design-point performance of helium gas turbines. Use of the method has been illustrated by applying it to the GTHTR300 reference.

Ionization of Helium Gas with a Tungsten Tip

  • Kim, Hee-Tae;Yu, Soon-Jae
    • Journal of Information Display
    • /
    • v.10 no.1
    • /
    • pp.45-48
    • /
    • 2009
  • The ionization of a helium atom was investigated as a function of gas pressure, with the use of a tungsten tip. The tungsten tip, to which the external voltage was applied, was used to generate a constant electron current. The ionization current of helium gas was measured as a function of gas pressure. Effective ionization occurred in the pressure range of 0.5-20 torr when the distance between the field emission tip and the collector was 1 cm. The ionization current was linearly proportional to the voltage that was applied to the tungsten tip.

The Effect of Helium Gas Intake on the Characteristics Change of the Acoustic Organs for Voice Signal Analysis Parameter Application (음성신호 분석 요소의 적용으로 헬륨가스 흡입이 음성 기관의 특성 변화에 미치는 영향)

  • Kim, Bong-Hyun;Cho, Dong-Uk
    • The KIPS Transactions:PartB
    • /
    • v.18B no.6
    • /
    • pp.397-404
    • /
    • 2011
  • In this paper, we were carried out experiments to apply parameter of voice analysis to measure changing characteristic articulator according to inhale the helium gas. The helium gas was used to overcome air embolism nitrogen gas to deal a fatal blow in body nitrogen gas by diver. However, the helium gas has been much trouble interpretation about abnormal voice of diver to cause squeaky voice of low articulation. Therefor, we was carried out experiments about pitch and spectrogram measurement, analysis based on to influence in acoustic organs before and after of inhaled helium gas.

Experimental study on GM-type pulse tube refrigerator with neon as working fluid (네온을 작동유체로 하는 GM형 맥동관 냉동기의 실험적 연구)

  • Kim, Hyo-Bong;Park, Jong-Ho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.3
    • /
    • pp.31-35
    • /
    • 2011
  • This paper describes experimental study on GM-type pulse tube refrigerator with neon as a working fluid instead of helium. Neon gas has similar compression characteristics with helium gas because it is a monoatoimc gas. In experiments, a cooling performance test was performed with same compressor and pulse tube refrigerator for neon and helium as working gas. From experimental results, a PTR with neon show the improved cooling performance than a PTR with helium. Cooling performance and operating characteristics of a PTR were discussed and compared for two different working gas.

Experimental Study on Cryogenic Propellant Circulation using Gas-lift (Gas-lift를 이용한 극저온 추진제의 재순환 성능에 대한 실험)

  • Kwon, Oh-Sung;Lee, Joong-Youp;Chung, Yong-Gahp
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.551-554
    • /
    • 2006
  • Inhibition of propellant temperature rising in liquid propulsion rocket using cryogenic fluid as a propellant is very important. Especially propellant temperature rising during stand-by after filling and pre-pressurization can bring into cavitation in turbo-pump. One of the method preventing propellant temperature rising in cryogenic feeding system is recirculating propellant through the loop composed of propellant tank, feed pipe, and recirculation pipe. The circulation of propellant is promoted through gas-lift effect by gas injection to lower position of recirculation pipe. In this experiment liquid oxygen and gas helium is used as propellant and injection gas. Under atmospheric and pressurized tank ullage condition, helium injection flow-rate is varied to observe the variation of recirculating flow-rate and propellant temperature in the feed pipe. There is appropriate helium injection flow-rate for gas-lift recirculation system.

  • PDF

COMPUTATIONAL ANALYSIS ON THE COOLING PERFORMANCE OF GLASS FIBER COOLING UNIT WITH HELIUM GAS INJECTION (헬륨가스 주입식 유리섬유 냉각장치의 냉각성능 해석)

  • Oh, I.S.;Kim, D.;Umarov, A.;Kwak, H.S.;Kim, K.
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.110-115
    • /
    • 2011
  • A modern optical fiber manufacturing process requires the sufficient cooling of glass fibers freshly drawn from the heated and softened silica preform in the furnace, since the inadequately cooled glass fibers are known to cause improper polymer resin coating on the fiber surface and to adversely affect the product quality of optical fibers. In order to greatly enhance the fiber cooling effectiveness at increasingly high fiber drawing speed, it is necessary to use a dedicated glass fiber cooling unit with helium gas injection between glass fiber drawing and coating processes. The present numerical study features a series of three-dimensional flow and heat transfer computations on the cooling gas and the fast moving glass fiber to analyze the cooling performance of glass fiber cooling unit, in which the helium is supplied through the discretely located rectangular injection holes. The air entrainment into the cooling unit at the fiber inlet is also included in the computational model and it is found to be critical in determining the helium purity in the cooling gas and the cooling effectiveness on glass fiber. The effects of fiber drawing speed and helium injection rate on the helium purity decrease by air entrainment and the glass fiber cooling are also investigated and discussed.

Thermal Losses Due to Non-ideal Gas Behavior of Helium in VM Heat Pumps (헬륨의 비이상기체 거동에 따른 VM열펌프의 손실)

  • Baik, J.H.;Chang, H.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.279-287
    • /
    • 1996
  • A cycle analysis is performed to investigate how the non-ideal gas behavior of helium reduces the heating capacity of VM heat pumps. Since the operating pressures of VM heat pumps are as high as 1 to 20 MPa, the compressibility factor of helium becomes clearly greater than 1 and the non-ideal behavior always represents a thermal loss in heating. To calculate the amount of the losses, an adiabatic cycle analysis is performed with the real properties of helium and the net enthaply flows through the two regenerators are numerically obtained. It is shown that the non-ideal gas losses could be as much as 8% in the heating capacity when the operating pressures are greater than 10MPa. The effects of the operating temperatures and the dead volumes on the loss are presented.

  • PDF

Calculation of fuel temperature profile for heavy water moderated natural uranium oxide fuel using two gas mixture conductance model for noble gas Helium and Xenon

  • Jha, Alok;Gupta, Anurag;Das, Rajarshi;Paraswar, Shantanu D.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2760-2770
    • /
    • 2020
  • A model for calculation of fuel temperature profile using binary gas mixture of Helium and Xenon for gap gas conductance is proposed here. In this model, the temperature profile of a fuel pencil from fuel centreline to fuel surface has been calculated by taking into account the dilution of Helium gas filled during fuel manufacturing due to accumulation of fission gas Xenon. In this model an explicit calculation of gap gas conductance of binary gas mixture of Helium and Xenon has been carried out. A computer code Fuel Characteristics Calculator (FCCAL) is developed for the model. The phenomena modelled by FCCAL takes into account heat conduction through the fuel pellet, heat transfer from pellet surface to the cladding through the gap gas and heat transfer from cladding to coolant. The binary noble gas mixture model used in FCCAL is an improvement over the parametric model of Lassmann and Pazdera. The results obtained from the code FCCAL is used for fuel temperature calculation in 3-D neutron diffusion solver for the coolant outlet temperature of the core at steady operation at full power. It is found that there is an improvement in calculation time without compromising accuracy with FCCAL.

Effect of weldability in shielding gases on the GTAW process of austenitic stainless steel (스테인레스강의 GTAW 기법에서 보호가스가 용접성에 미치는 영향)

  • Kim, Dae-Ju;Baek, Ho-Seong;Ryu, Seung-Hyeop;Go, Seong-Hun;Kim, Gyeong-Ju;Kim, Dae-Sun
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.63-65
    • /
    • 2006
  • The paper deals with the effect of hydrogen or helium in argon as a shielding gas on GTA welding of austenitic stainless steel. The studies were carried out in GTA(Gas Tungsten Arc) welding with a non-consumable electrode in case with different volume additions of hydrogen or helium to the argon shielding gas, i.e $5%H_2,\;10%H_2$, 30%He and 67%He. The penetration, welding voltage, microstructure and mechanical property were examined. The deepest penetration was obtained from the sample which was welded under shielding gas of $10%H_2$. The studies showed that hydrogen or helium addition to argon changes the static characteristic of the welding arc. The hydrogen or helium addition to argon increases arc power and the quantity of the material melted. The weld metal penetration depth and its width increased with increasing hydrogen or helium content. Additionally, welding voltage increased with increasing hydrogen or helium content.

  • PDF

Adiabatic Analysis of Stirling Refrigerator with Real Gas Properties (실제기체의 물성을 이용한 Stirling 냉동기 단열해석)

  • Baik, J.H.;Chang, H.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.150-160
    • /
    • 1995
  • A Finkelstein adiabatic analysis is performed for Stirling refrigerator with real gas properties of helium. The mass balance and the energy balance equations are formulated into the form that is convenient for incorporating an available computer code of the helium properties. The differential equations are solved numerically. The calculated coefficient of performance(COP) and the pressure variation are compared with the results obtained when helium is assumed to be an ideal gas. The relative errors in COP are presented as functions of the refrigeration temperature and the maximum cycle pressure.

  • PDF