• 제목/요약/키워드: Helium

검색결과 778건 처리시간 0.025초

Effect of Partition within Opening on Helium-Air Exchange Flow (개구부에 삽입한 수직평판이 헬륨.공기치환류에 미치는 영향)

  • Tae-il Kang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권6호
    • /
    • pp.797-805
    • /
    • 2003
  • This paper describes experimental investigations of helium-air exchange flow through single opening and partitioned opening. Such exchange flows may occur following rupture accident of stand pipe in high temperature gas cooled reactor. A test vessel with a small opening on top of test cylinder is used for experiments. An estimation method of mass increment is developed and applied to measure the exchange flow rate. A technique of flow visualization by Mach-Zehnder interferometer is provided to recognize the exchange flows. Flow measurements are made with the opening, for partition ratios H_p/H$_1$$ in the range 0 to 1. where H_p$ and H$_1$ are partition length and height of the opening. respectively. In the case of H_p/H$_1$$ of 0, flow passages of upward flow of the helium and downward flow of the air within the opening are unseparated (bidirectional), and the two flows interfere within the opening. The unseparated flow increases strength of flow resistance and therefore, the exchange flow rate is minimum through range of the partition ratios. Two flow zones, i.e., separated (unidirectional) flow zone and unseparated (bidirectional) flow zone, exist with increasing the partition length. The exchange flow rate increases with increasing the separated flow zone. It is found that a maximum exchange flow rate exists at H_p/H$_1$$ of 1. As a result of comparison of the exchange flow rates by changing the partition ratio, the fluids Interference in the unseparated zone is found to be an important factor on the helium-air exchange flow rate.

High-Temperature Structural Analysis Model of the Process Heat Exchanger for Helium Gas Loop (II) (헬륨가스루프 시험용 공정열교환기에 대한 고온구조해석 모델링(II))

  • Song, Kee-Nam;Lee, Heong-Yeon;Kim, Chan-Soo;Hong, Seong-Duk;Park, Hong-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제34권10호
    • /
    • pp.1455-1462
    • /
    • 2010
  • PHE (Process Heat Exchanger) is a key component required to transfer heat energy of $950^{\circ}C$ generated in a VHTR (Very High Temperature Reactor) to the chemical reaction that yields a large quantity of hydrogen. Korea Atomic Energy Research Institute established the helium gas loop for the performance test of components, which are used in the VHTR, and they manufactured a PHE prototype to be tested in the loop. In this study, as part of the hightemperature structural-integrity evaluation of the PHE prototype, which is scheduled to be tested in the helium gas loop, we carried out high-temperature structural-analysis modeling, thermal analysis, and thermal expansion analysis of the PHE prototype. The results obtained in this study will be used to design the performance test setup for the PHE prototype.

A study on output power characteristic of selenium vapour multiline laser using isotope helium and helium filter (헬륨 동위원소 및 헬륨필터를 사용한 셀레늄증기 다중광선레이저의 출력특성에 관한 연구)

  • 최상태
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • 제18권2호
    • /
    • pp.16-22
    • /
    • 2004
  • The paper presents the effects of output-coupling power and small signal gain of selenium vapour multiline laser by discharge of either to $^4$He or $^3$He. The purity of the He gas was improved with a special He-fille.. The result shows that compared with those of $^4$He, the output-coupling power and small-signal gain of $^3$He increase in the most of the lines. Especially, the small-signal gain of $^3$He for the strong lines (497.6 nm, 499.3 nm, 506.9 nm, 517.6 nm, 522.8 nm, 530.5 nm) lies about 30% higher than that of $^4$He, and the output-coupling power from doubles to triples.

Cooling of Cryogenic Liquids by Gas Helium Injection (I) (가스분사에 의한 극저온 액체의 냉각에 관한 연구 (I))

  • Song, Yi-Hwa;Choi, Young-Hwan;Kim, Yoo;Chung, Yong-Gahp;Cho, Nam-Kyung;Jeong, Sang-Kwon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2003년도 제21회 추계학술대회 논문집
    • /
    • pp.141-144
    • /
    • 2003
  • In this paper, to satisfy the temperature requirement of turbopump-inlet condition, the cooling of cryogenic propellant is performed at the simulated suction-line of the Launch Vehicle. The cooling method is by using Gas helium injection. This study investigates the effect of helium injection on the liquid nitrogen which simulates the liquid oxygen. By using helium injection, the subcooling of liquid nitrogen can be achieved within four minute when the ratio of gas volume flowrate to the volume of L$N_2$ is approximately v/v$_{L}$≒0.8min$^{-1}$ . .

  • PDF

Dose coefficients of mesh-type ICRP reference computational phantoms for external exposures of neutrons, protons, and helium ions

  • Yeom, Yeon Soo;Choi, Chansoo;Han, Haegin;Shin, Bangho;Nguyen, Thang Tat;Han, Min Cheol;Kim, Chan Hyeong;Lee, Choonsik
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1545-1556
    • /
    • 2020
  • Recently, the International Commission on Radiological Protection (ICRP) has developed the Mesh-type Reference Computational Phantoms (MRCPs) for adult male and female to overcome the limitations of the current Voxel-type Reference Computational Phantoms (VRCPs) described in ICRP Publication 110 due to the limited voxel resolutions and the nature of voxel geometry. In our previous study, the MRCPs were used to calculate the dose coefficients (DCs) for idealized external exposures of photons and electrons. The present study is an extension of the previous study to include three additional particles (i.e., neutrons, protons, and helium ions) into the DC library by conducting Monte Carlo radiation transport simulations with the Geant4 code. The calculated MRCP DCs were compared with the reference DCs of ICRP Publication 116 which are based on the VRCPs, to appreciate the impact of the new reference phantoms on the DC values. We found that the MRCP DCs of organ/tissue doses and effective doses were generally similar to the ICRP-116 DCs for neutrons, whereas there were significant DC differences up to several orders of magnitude for protons and helium ions due mainly to the improved representation of the detailed anatomical structures in the MRCPs over the VRCPs.

Commissioning result of the KSTAR in-vessel cryo-pump

  • Chang, Y.B.;Lee, H.J.;Park, Y.M.;Lee, Y.J.;Kwag, S.W.;Song, N.H.;Park, D.S.;Joo, J.J.;Moon, K.M.;Kim, N.W.;Yang, H.L.;Oh, Y.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • 제15권4호
    • /
    • pp.53-58
    • /
    • 2013
  • KSTAR in-vessel cryo-pump has been installed in the vacuum vessel top and bottom side with up-down symmetry for the better plasma density control in the D-shape H-mode. The cryogenic helium lines of the in-vessel cryo-pump are located at the vertical positions from the vacuum vessel torus center 2,000 mm. The inductive electrical potential has been optimized to reduce risk of electrical breakdown during plasma disruption. In-vessel cryo-pump consists of three parts of coaxial circular shape components; cryo-panel, thermal shield and particle shield. The cryo-panel is cooled down to below 4.5 K. The cryo-panel and thermal shields were made by Inconel 625 tube for higher mechanical strength. The thermal shields and their cooling tubes were annealed in air environment to improve the thermal radiation emissivity on the surface. Surface of cryo-panel was electro-polished to minimize the thermal radiation heat load. The in-vessel cryo-pump was pre-assembled on a test bed in 180 degree segment base. The leak test was carried out after the thermal shock between room temperature to $LN_2$ one before installing them into vacuum vessel. Two segments were welded together in the vacuum vessel and final leak test was performed after the thermal shock. Commissioning of the in-vessel cryo-pump was carried out using a temporary liquid helium supply system.

Prediction of Vapor Pressure of the Inert Gases (비활성 기체의 증기압 예측)

  • Chung, Jaygwan-G.
    • Journal of the Korean Chemical Society
    • /
    • 제47권6호
    • /
    • pp.541-546
    • /
    • 2003
  • Experimental vapor pressure measurements available in the literature for the inert gases have been rigorously analyzed and used to evaluate the constants A, B, C, D, and exponent of the following equation in the form of reduced vapor pressure and reduced temperature : $InP_r=A+{\frac{B}{T_r}+CInT_r+DT_n^r}$ According to varying exponent n all four constants have been obtained for the inert gases by the error analysis. This has provided us the best n and four constants for each of the inert gases ; Argon, krypton, xenon, helium, and neon. In order to obtain the calculated vapor pressure by the above equation, only the normal boiling point and the critical pressure and critical temperature are necessary to get the vapor pressure for an overall average deviation of 0.31 % for 406 experimental vapor pressure points consisting of five gases available in the literature. The average deviation for argon, krypton, and xenon is 0.24%, 0.09%, and 0.22%, respectively, for neon 1.31% and for helium 0.61%. These results are not unexpected in view of the significant quantum effects associated with helium and to a lesser degree with neon.

Oxidation of CVD β-SiC in Impurity-Controlled Helium Environment at 950℃ (950℃ 불순물을 포함한 헬륨 환경에서 CVD β-SiC의 산화)

  • Kim, Dae-Jong;Kim, Weon-Ju;Jang, Ji-Eun;Yoon, Soon-Gil;Kim, Dong-Jin;Park, Ji-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • 제48권5호
    • /
    • pp.426-432
    • /
    • 2011
  • The oxidation behavior of CVD ${\beta}$-SiC was investigated for Very High Temperature Gas-Cooled Reactor (VHTR) applications. This study focused on the surface analysis of the oxidized CVD ${\beta}$-SiC to observe the effect of impurity gases on active/passive oxidation. Oxidation test was carried out at $950^{\circ}C$ in the impurity-controlled helium environment that contained $H_2$, $H_2O$, CO, and $CH_4$ in order to simulate VHTR coolant chemistry. For 250 h of exposure to the helium, weight changes were barely measurable when $H_2O$ in the bulk gas was carefully controlled between 0.02 and 0.1 Pa. Surface morphology also did not change based on AFM observation. However, XPS analysis results indicated that a very small amount of $SiO_2$ was formed by the reaction of SiC with $H_2O$ at the initial stage of oxidation when $H_2O$ partial pressure in the CVD ${\beta}$-SiC surface placed on the passive oxidation region. As the oxidation progressed, $H_2O$ consumed and its partial pressure in the surface decreased to the active/passive oxidation transition region. At the steady state, more oxidation did not observable up to 250 h of exposure.

A DYNAMIC SIMULATION OF THE SULFURIC ACID DECOMPOSITION PROCESS IN A SULFUR-IODINE NUCLEAR HYDROGEN PRODUCTION PLANT

  • Shin, Young-Joon;Chang, Ji-Woon;Kim, Ji-Hwan;Park, Byung-Heung;Lee, Ki-Young;Lee, Won-Jae;Chang, Jong-Hwa
    • Nuclear Engineering and Technology
    • /
    • 제41권6호
    • /
    • pp.831-840
    • /
    • 2009
  • In order to evaluate the start-up behavior and to identify, through abnormal operation occurrences, the transient behaviors of the Sulfur Iodine(SI) process, which is a nuclear hydrogen process that is coupled to a Very High Temperature Gas Cooled Reactor (VHTR) through an Intermediate Heat Exchanger (IHX), a dynamic simulation of the process is necessary. Perturbation of the flow rate or temperature in the inlet streams may result in various transient states. An understanding of the dynamic behavior due to these factors is able to support the conceptual design of the secondary helium loop system associated with a hydrogen production plant. Based on the mass and energy balance sheets of an electrodialysis-embedded SI process equivalent to a 200 $MW_{th}$ VHTR and a considerable thermal pathway between the SI process and the VHTR system, a dynamic simulation of the SI process was carried out for a sulfuric acid decomposition process (Second Section) that is composed of a sulfuric acid vaporizer, a sulfuric acid decomposer, and a sulfur trioxide decomposer. The dynamic behaviors of these integrated reactors according to several anticipated scenarios are evaluated and the dominant and mild factors are observed. As for the results of the simulation, all the reactors in the sulfuric acid decomposition process approach a steady state at the same time. Temperature control of the inlet helium is strictly required rather than the flow rate control of the inlet helium to keep the steady state condition in the Second Section. On the other hand, it was revealed that the changes of the inlet helium operation conditions make a great impact on the performances of $SO_3$ and $H_2SO_4$ decomposers, but no effect on the performance of the $H_2SO_4$ vaporizer.

Effect of Opening Partition Length on Helium-Air Exchange Flow (개구부 삽입부의 길이가 헬륨 및 공기의 치환류에 미치는 영향)

  • 강태일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권2호
    • /
    • pp.192-200
    • /
    • 1999
  • This paper describes experimental investigations of helium-air exchange flow through parti-tioned opening. Such exchange flow may occur following rupture accident of stand pipe in high temperature gas cooled reactor. A test vessel with a opening on top of test cylinder is used for experiments. An estimation method of mass increment is developed and applied to measure the exchange flow rate. A technique of flow visualization by Mach-Zehnder interferometer is provided to recognize the exchange flows. Flow measurements are made with partitioned opening for parti-tion rations $H_p/H_1$ in the range 0 to 1 where $H_p$ and $H_1$ are partition length and height of the open-ing respecticely. In the case of $H_p/H_1$ of 0 flow passages of upward flow of the helium and down-ward flow of the air within the opening are unseparated (bidirectional) and the two flows interact exchange flow rate is minimum through range of the partition ratios, Two flow zones i.e. separat-ed(unidirectional)flow zone and unseparated(bidirectional) flow zone exist with increasing the partition. length, The exchange flow rate increases with increasing the separated flow zone. It is found that a maximum exchange flow rate exists at $H_p/H_1$ of 1. As a result fo comparison of the exchange flow rates by changing the partition ration the fluids interaction in the unseparated zone is found to be an important factor on the helium-air exchange flow rate.

  • PDF