• Title/Summary/Keyword: Helicopter Conceptual Design

Search Result 22, Processing Time 0.028 seconds

Development of Helicopter Design and Analysis Program for Helicopter Conceptual Design (헬리콥터 개념설계를 위한 설계 및 분석 프로그램 개발)

  • Ko, Kang-Myung;Kang, Seung-On;Kim, Sang-Hun;Lee, Dong-Ho;Chang, Yong-Jin;Choi, Won;Hwang, Yu-Sang;Kim, Cheol-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1595-1600
    • /
    • 2007
  • It is necessary a simple helicopter design and performance analysis program for a stage of helicopter conceptual design. To meet that needs, we have developed a program which is simply used to estimate helicopter configuration and performance. The program developed by this study is composed of Requirement, Mission profile Analysis, Size, Aerodynamic, Trim, Propulsion, Weight, and Performance modules, and each modules carry out operations for a given flight condition. In this study, we validate this analysis program in 9,500 1bs and 22,000 1bs helicopters and estimate design configuration and performance of 16,000 1b helicopter. And We can use this program to optimization process for Helicopter MDO framework.

  • PDF

Systematic Determination of Empirical Parameters Used in Helicopter Conceptual Design (헬리콥터 개념설계에 사용하는 경험적파라메터의 체계적인 결정기법)

  • Kim, Won-Jin;Chae, Sang-Hyun;Oh, Se-Jong;Kim, Seung-Bum;Ahn, Iee-Ki;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.8
    • /
    • pp.703-710
    • /
    • 2012
  • At the stage of conceptual design of a helicopter, it is a general way using low fidelity analysis methods because of a large number of design calculations and trade-off studies. Determination of empirical parameters used in analysis codes for more practical design, depends on an user's design experiences, which effects on the accuracy and the fidelity of conceptual design results. Thus, more precise and logical method should be required to determine the empirical parameters used in the conceptual design of a helicopter. The present method is to be used not only in verifying the empirical parameters generated by design requirements, but also regenerate them if they contain any errors. Empirical parameters produced by present method were used to design a helicopter with a payload objective and performance constraints of an operating helicopter. As a result, weights and geometries of designed helicopter matched the target value within 5% significance level, proving that the suggested parameter generating method can be useful in the conceptual design of a helicopter.

Validation on Conceptual Design and Performance Analyses for Compound Rotorcrafts Considering Lift-offset

  • Go, Jeong-In;Park, Jae-Sang;Choi, Jong-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.154-164
    • /
    • 2017
  • This work conducts a validation study for the XH-59A helicopter using a rigid coaxial rotor system in order to establish the techniques of the conceptual design and performance analysis for the lift-offset compound rotorcraft. As a tool for conceptual design and performance analysis, NDARC (NASA Design and Analysis of Rotorcraft) is used for the present study. An assumed mission profile is considered for the conceptual design of the XH-59A. As a validation result of the design, the dimensions and weight of the XH-59A are appropriately designed when compared to the target values since the relative error is less than 0.5%. Then, performance analyses are conducted for the designed XH-59A model with and without auxiliary propulsion in hover and forward flight conditions. The present analyses show good validity since the prediction results compare well with both the flight test and previous analyses. Therefore, the techniques for the conceptual design and performance analysis of the lift-offset compound helicopter are overall considered to be appropriately established. In addition, this study investigates the influence of the lift-offset on the rotor effective lift-to-drag ratio of the XH-59A helicopter with auxiliary propulsion. As a result, the improvement of the rotor effective lift-to-drag ratio can be obtained by appropriately increasing the lift-offset in high-speed flight.

Mechanical Development of an Unmanned Helicopter for Precise Small-scaled ULV Aerial Application - Conceptual Design and Prototype - (저투입 소필지 정밀 살포용 무인헬리콥터의 기체개발 - 기체요소의 개념설계 및 시작기 -)

  • Koo, Y.M.;Seok, T.S.;Shin, S.K.;Lee, C.S.;Kang, T.G.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.2
    • /
    • pp.94-100
    • /
    • 2008
  • Present chemical application method using a power sprayer has been labor intensive, costly and ineffective. Therefore, a small agricultural unmanned helicopter was suggested to replace the conventional spray system. In this study, conceptual design for developing the helicopter and a consequential prototype were reported. The overall conceptual design was initiated by deciding the type of agricultural helicopter, as the single rotor helicopter with a tail system. As the first step of the designing, an air-cooled, 2-stroke engine was selected and a prototype transmission was designed by determining the rotating speed of main rotor shaft. A 'pusher' type tail rotor system was adapted to balance the reaction torque and reduce the power use. The tail boom length was designed to avoid the rotating trajectory of the main rotor. The RF console consisted of the engine control, attitude control, and emergency control modules. Assembling the prototype concluded the mechanical development of the agricultural helicopter.

A Study of the Conceptual Design of Medium Size Utility Helicopter Rotor System (중형 헬리콥터 로터 시스템 개념설계 연구)

  • Kim, June-Mo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.3 s.22
    • /
    • pp.33-41
    • /
    • 2005
  • This paper describes the conceptual design of medium size helicopter rotor system. Based on assumed design requirements, trade-off study for rotor configuration has been conducted in terms of rotor tip speed, disk loading, blade area, solidity, etc for estimated primary mission gross weight. For the main rotor, four-blade and five-blade rotors are studied with the conventional tail rotor. The performance analysis for baseline configuration is conducted using a helicopter performance analysis program. The analysis shows design results satisfy the design requirements.

Further Improvement in Rotor Aerodynamics Estimation in Helicopter Conceptual Design and Optimization Framework for a Compound Rotorcraft

  • Lim, JaeHoon;Shin, SangJoon;Kee, YoungJung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.641-650
    • /
    • 2017
  • In order to include the design capability for a compound rotorcraft in a helicopter conceptual design and optimization framework, relevant further improvement was planned and conducted. Previously, a certain conceptual design optimization framework was developed by the present authors to design a modern rotorcraft with single main and tail rotor. The previously developed framework was further improved to expand its capability for a compound rotorcraft. Specifically, its power estimation algorithm was upgraded by using a comprehensive rotorcraft analysis program, CAMRAD II. The presently improved conceptual design and optimization framework was validated using data of the XH-59A aircraft.

Conceptual Design of a Ducted Fan for Helicopter Anti-Torque System

  • Hwang, Chang-Jeon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.1
    • /
    • pp.89-96
    • /
    • 2005
  • Ducted fans have advantages in noise as well as operational safety aspects compared to conventional tail rotors and are used as an anti-torque system for various classes of helicopters. The final goal of this study is to develop a ducted fan anti-torque system which can replace conventional tail rotors of existing helicopters to achieve safety enhancement and low noise level. In this paper, a conceptual design process and the results are described. Initially, the design requirement and the design parameter characteristics are analysed, and then initial sizing and configuration design are performed. There are several configuration changes due to specific technical reasons in each case. Finally, the required power and the pitch link load are predicted as an initial estimation. The conceptual design technique for the ducted fan in this study can be easily applied to the design of other ducted fans such as the lift fan for unmanned aerial vehicle.

Parametric Design Techniques for Optimal RC Helicopter Design (RC 헬리콥터 최적화 설계를 위한 변수설계 기법)

  • Lee, Jae-Young;Hwang, Ho-Yon;Kim, Jung-Yub
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.16 no.4
    • /
    • pp.1-11
    • /
    • 2008
  • This research presents a study for the knowledge-based configuration design development of a RC (remote control) helicopter. Parametric design and knowledge based design concepts are introduced for rapid design changes and analyses using commercial CAD software, CATIA(R) Knowledgeware module. It is crucial for RC helicopter design because it enables rapid conceptual design through instant configuration changes. Positions and dimensions of RC helicopter parts were used as design parameters. As an example, positions of CG(center of gravity) points were traced and plotted as the configuration changes. Further research should be performed in areas of user interfaces and web-based multi-user environments instead of using Excel data sheets.

  • PDF

Validation Study on Conceptual Design and Performance Analysis for Helicopter using NDARC (NDARC을 이용한 헬리콥터 개념설계 및 성능해석 검증 연구)

  • Go, Jeong-In;Park, Jae-Sang;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.10
    • /
    • pp.877-886
    • /
    • 2016
  • A validation study is conducted for the conceptual design and performance analysis of UH-60A Black Hawk in order to establish the conceptual design and performance analysis techniques for conventional helicopters using a single main rotor and a tail rotor. As a tool for conceptual design and analysis, NDARC(NASA Design and Analysis of Rotorcraft) is used for the present study. The conceptual design for UH-60A is successfully validated as compared with the target values. Then, various performance analyses in hover and forward flight are conducted for the UH-60A model obtained from the present design work, and they are compared well with the wind tunnel test, flight test, and previous analyses using various analysis tools. Through this validation work, the conceptual design and performance analysis techniques for the conventional helicopter are appropriately established.

A Study of Helicopter Initial Sizing using Statistical Methodology (통계적 기법을 적용한 헬기 형상설계 연구)

  • Kim, June-Mo;Oh, Woo-Seop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.22-32
    • /
    • 2007
  • This paper describes a study of a helicopter database for the sizing stage of a preliminary design process. The database includes specifications and performance parameters for more than 150 conventional single rotor helicopters currently in market. Design parameters, including configuration and weight parameters, have been analyzed and trend curve equations(regression equations) are derived using the regression analysis method. Finally, the applicability of this research result was verified whether the method is reliable for being adopted as a useful design tool in the early stage of a helicopter design process.