• Title/Summary/Keyword: Helical Minichannel

Search Result 2, Processing Time 0.014 seconds

Alignment of Microbeads Using Spinning Helical Minichannel Cartridge (회전하는 나선형 미니채널 카트리지를 이용한 미세입자 정렬)

  • Kim, Subin;Prasad, Bibin;Kim, Jung Kyung
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.3
    • /
    • pp.38-45
    • /
    • 2016
  • Separation of particles based on different sizes, detection of pathogenic bacteria and isolation of leukocytes from whole blood are typical applications of spiral or helical microchannels. The present study focuses on developing a CD4+ T-cell counting device for monitoring HIV/AIDS patients with the aid of a helical minichannel used for a sample cartridge. For the experiment, $10{\mu}m$ sized microbeads were used for visualization with a fluorescence imaging system. Alignment of microbeads was investigated in a stationary and spinning sample cartridge filled with glycerol-water mixtures of different densities. The helical minichannel was spun using a DC motor controlled by an Arduino board with a Bluetooth shield. It was found that when the sample cartridge was made stationary, no bead alignment was achieved for a medium with density (0% and 20% glycerol) lower than that of the beads, but when it was spun at 2000-3000 rpm for 1-4 min, an alignment was obtained at the top of the channel facilitating optical detection and enumeration of those microbeads. Since an alignment of microbeads was achieved for a medium with density as that of blood plasma, the same approach can be applied for aligning and counting CD4+ T-lymphocytes in whole blood samples collected from patients.

A Study on Performance Analysis of the Helically Coiled Evaporator with Circular Minichannels

  • Kim Ju-Won;Im Yong-Bin;Kim Jong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.1059-1067
    • /
    • 2006
  • In order to develop a compact evaporator, experiments that show characteristics of evaporating heat transfer and pressure drop in the helically coiled minichannel were performed in our previous research. This study was focused on the performance analysis of helically coiled heat exchangers with circular minichannels with an inner diameter=1.0 mm. The working fluid was R-22, and the properties of R-22 were estimated using the REFPROP program. Numerical simulation was performed to compare results with the experimental results of the helically coiled heat exchanger. As the heat transfer rate and pressure drop were calculated at the micro segment of the branch channels, the performance of the evaporator was evaluated. The following conclusions were obtained through the numerical simulations of the helically coiled heat exchanger. It showed good performance when the flow rate of each branch channels was suitable to heat load of air-side. The numerical simulation value agreed with experimental results within ${\pm}15%$. In this study, a numerical simulation program was developed to estimate the performance of a helically coiled evaporator. And, an optimum helically coiled minichannels evaporator was designed.