• Title/Summary/Keyword: Helath monitoring

Search Result 2, Processing Time 0.014 seconds

PZT Sensor-based Structural Health Monitoring for CFRP Laminated Concrete Structures (CFRP 보강 콘크리트 구조물의 PZT센서 기반 구조 건전성 모니터링)

  • Ryu, Sung-Chan;Kim, Ju-Won;Lee, Chang-Gil;Park, Seung-Hee;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.72-78
    • /
    • 2010
  • A CFRP (Carbon Fiber-Reinforced Plastic) strengthening method is being very widely used to increase the load-carrying capacity of host structures, especially for bridges. However, not only flexure and shear failures but debonding failure also might occur in CFRP strengthened concrete structures. The CFRP debonding failure would cause a collapse accident of the host structure. Therefore, real-time health monitoring about the CFRP bonding condition is strongly required. In this study, a feasibility of the impedance-based damage detection method using PZT sensors is investigated through a series of experimental study monitoring both concrete cracks and CFRP debonding defects.

Crack and Debonding Donitoring of RC Beams Strengthened with CFRP Plates (CFRP 판 보강 RC보의 균열 및 박리 손상 모니터링)

  • Yoon, Jun Ho;Han, Jung Hun;Cho, Doo Yong;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.185-192
    • /
    • 2011
  • A CFRP (Carbon Fiber-Reinforced Plastic) strengthening method being widely used to increase the load-carrying capacity of structures is very suitable for existing bridge structures. However, not only flexure and shear failures but also debonding failure might be additionally occured in reinforced concrete(RC) beams strengthened with the CFRP plates. The CFRP debonding failure would cause a brittle fracture of the beam. Therefore, health monitoring for the CFRP bonding condition is strongly required. In this study, a feasibility of the impedance-based damage detection method using PZT sensors was investigated through a series of experimental studies for realtime structural health monitoring(SHM) for the CFRP laminated concrete structures.