• 제목/요약/키워드: Height Prediction

검색결과 584건 처리시간 0.023초

부산 연안지형 VRS-GPS 계측을 통한 태풍해일 침수예측 (VRS-GPS Measure of Typhoon Surge Flood Determinedin Busan Coastal Topography)

  • 김가야;정광효;김정호
    • 한국해양공학회지
    • /
    • 제26권1호
    • /
    • pp.47-53
    • /
    • 2012
  • A coastal flood area was predicted using the empirical superposition of the typhoon surge level and typhoon wave height along the Busan coastal area. The historical typhoon damages were reviewed, and the coastal topography was measured using VRS-GPS. A FEMA formula was applied to estimate the coastal flood area in a typhoon case when the measured and predicted data of typhoon waves are not available. The results in the area of Haeundae beach and Gwangalli beach were verified using the flood area data from the case of Typhoon Maemi (2003). If a Hurricane Katrina class typhoon were to pass through the Maemi trajectory, the areathat would be flooded along theBusan coastal area was predicted and compared with the results of the Maemi case. Because of the lack of ocean environment data such as data for the sea level, waves, bathymetry, wind, pressure, etc., it is hard to improve the prediction accuracy for the coastal flood area in the typhoon case, which could be reflected in the policy to mitigate a typhoon's impact. This paper discusses the kinds of ocean environment information that is needed to predict a typhoon's impact with better accuracy.

2011년 1월의 동아시아 한랭 아노말리 특성 (Characteristic Features Observed in the East-Asian Cold Anomalies in January 2011)

  • 최우갑;정지연;전종갑
    • 대기
    • /
    • 제23권4호
    • /
    • pp.401-412
    • /
    • 2013
  • East Asia experienced extremely cold weather in January 2011, while the previous December and the following February had normal winter temperature. In this study National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data are used to investigate the characteristic features observed in the meteorological fields such as temperature, sea-level pressure, geopotential height, and wind during this winter period. In January the planetary-wave pattern is dominated by stationary-wave form in the mid-to-high latitude region, while transient waves are significant in the previous month. To understand the planetary-wave features quantitatively, harmonic analyses have been done for the 500-hPa geopotential height field. In the climatological-mean geopotential heights the wave numbers 1, 2, and 3 are dominant during the whole winter. In January 2011 the waves of number 1, 2, and 3 are dominant and stationary as in the climatological-mean field. In December 2010 and February 2011, however, the waves of number 4, 5, and 6 play a major role and show a transient pattern. In addition to the distinctive features in each month the planetary-wave patterns dependent on the latitude are also discussed.

페달 종류 및 위치에 따른 최적 페달 레이아웃 설정 (Optimal Layout of Vehicle Pedals Depending on the Types and Positions of Vehicle Pedals)

  • 최정필;정의승;정성욱;정성욱
    • 대한인간공학회지
    • /
    • 제26권4호
    • /
    • pp.91-101
    • /
    • 2007
  • The purpose of this study is to propose an optimal layout for the accelerator and brake pedals in sedan and SUV, and also to compare the pendant-type pedal with organ-type pedal. 12 male subjects participated in the experiment, the subjects were divided into 3 groups according to height percentile(under 50%ile, 50%ile to 75%ile, over 75%ile). Independent variables were seat height (H30), X and Y coordinates of the center of accelerator and brake pedals and the x and y relative distance between two pedals. Dependent variable was subjective ratings for lower body discomfort. The response surface methodology using a central composite design was employed to develop a prediction model for lower body discomfort of each pedal. It is noticeable that the lateral position of the accelerator in all groups was not statistically significant. The optimal locations of both pedals were found to be distinct according to the percentile of subjects. X distance from accelerator to brake of both-type pedals is similar. But Y distance from accelerator to brake of organ-type is less about 2-3cm than that of pedant-type.

간이 파인 블랭킹 금형의 개발을 통한 범용 유압 프레스에서의 원형 정밀진단 가공성 연구 (Development of Fine Blanking Die with Fluid Chamber and its Application to Procuction of Circular Blanks in a Hydraulic Press)

  • Kim, J.H.;Ryu, J.G.;Chung, W.J.
    • 한국정밀공학회지
    • /
    • 제13권5호
    • /
    • pp.157-163
    • /
    • 1996
  • This paper is concered on the development of low-cost fine blanking die with two fluid chambers of which the pressure can be controlled by a hydraulic unit and its application to producting circular blanks in a conventional hydraulic press, not in a special triple-action press usually adopte in fine blanking operation. Four important working parameters affecting on the precision accuracy of products such as existence and position of Vee-ring, stripping force and counter punching force are primarily considered for experiments. Finite element analysis by suing ABAQUA software is approxi- mately made for blanking of circular specimen with a flat stripper plate and then compared with experimental measurements. The the theoretical prediction of camber height which represents deflection of a dish-shaped specimen after blanking seems to give a qualitatively good agreement. It is shown through experiments the the camber height decreases with decreasing stripping force and also with increasing counter punching force, but particularly depending on the latter much more than the former.

  • PDF

근력을 이용한 최대허용중량 예측 모델에 관한 인체심리학적 연구 (Psychophysical Modeling for Lifting Capacity Using Isometric & Isoinertial Strength Variables)

  • 윤훈용;추동우
    • 한국안전학회지
    • /
    • 제24권2호
    • /
    • pp.89-93
    • /
    • 2009
  • The muscular-skeletal disorders that have become a major issue recently in Korean industrial safety area are mainly caused by manual material handling task. The objective of this study is to provide scientific data for the establishment of work safety standard for Korean workers through the experiments of lifting task under various conditions, in order to prevent the muscular-skeletal disorders in the industrial work site. This study used the psychophysical approach to determine the maximum acceptable weight(MAWL) for seven young male subjects, and used isometric and isoinertial strength variables as predictors to develop prediction models. Also, the oxygen consumption, heart rate, and RPE were measured or recorded while subjects were lifting their MAWL. Three different lifting frequencies(1, 3, 5lifts/min) with two lifting range from floor to knuckle height and knuckle to shoulder height for one hour's work shift using free style lifting technique were studied. These results may not only provide scientific data in establishing the safety standards for Korean workers' lifting tasks, but also contribute preventing the rapidly increasing muscular-skeletal disorders lately on the industrial site.

Study on the Unsteady Wakes Past a Square Cylinder near a Wall

  • Kim Tae Yoon;Lee Bo Sung;Lee Dong Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제19권5호
    • /
    • pp.1169-1181
    • /
    • 2005
  • Experimental and numerical studies on the unsteady wake field behind a square cylinder near a wall were conducted to find out how the vortex shedding mechanism is correlated with gap flow. The computations were performed by solving unsteady 2-D Incompressible Reynolds Averaged Navier-Stokes equations with a newly developed ${\epsilon}-SST$ turbulence model for more accurate prediction of large separated flows. Through spectral analysis and the smoke wire flow visualization, it was discovered that velocity profiles in a gap region have strong influences on the formation of vortex shedding behind a square cylinder near a wall. From these results, Strouhal number distributions could be found, where the transition region of the Strouhal number was at $G/D=0.5{\sim}0.7$ above the critical gap height. The primary and minor shedding frequencies measured in this region were affected by the interaction between the upper and the lower separated shear layer, and minor shedding frequency was due to the separation bubble on the wall. It was also observed that the position (y/G) and the magnitude of maximum average velocity $(u/u_{\infty})$ in the gap region affect the regular vortex shedding as the gap height increases.

유한요소법을 이용한 사각단면 금형스프링의 초기 설계변수 예측 (Prediction of Initial Design Parameter of Rectangular Shaped Mold Spring Using Finite Element Method)

  • 이형욱
    • 소성∙가공
    • /
    • 제20권6호
    • /
    • pp.450-455
    • /
    • 2011
  • This paper presents an inverse design methodology for the cross section geometry of mold spring with a rectangular cross section as the starting material for a coiling process. The cross-sections of mold springs are universally rectangular, as the parallel sides minimize the possibility of failure under high service loads. Pre-coiled wires are initially designed to have a trapezoidal cross section, which becomes a rectangle by the coiling process. This study demonstrates a numerical exercise to predict changes in the sectional geometry in spring manufacture and to obtain the initial cross section which becomes the exact rectangle desired from the manufacturing process. Finite element analysis was carried out to calculate the sectional changes for various mold springs. Geometrical parameters were the widths at inner and outer radii, the inner and the outer corner radii, and the height. A partial least square regression analysis was carried out to find the main contributing factors for deciding initial design values. The height and the width mainly affected various initial parameters. The initial width at the inner radius was mostly affected by various specification parameters.

임의 형태의 해양구조물에 의한 해수파의 산란 (The Water Wave Scattering by the Marine Structure of Arbitrary Shape)

  • 신승호;이중우
    • 한국항해학회지
    • /
    • 제17권1호
    • /
    • pp.61-78
    • /
    • 1993
  • Large offshore structure are to be considered for oil storage facilities , marine terminals, power plants, offshore airports, industrial complexes and recreational facilities. Some of them have already been constructed. Some of the envisioned structures will be of the artificial-island type, in which the bulk of structures may act as significant barriers to normal waves and the prediction of the wave intensity will be of importance for design of structure. The present study deals wave scattering problem combining reflection and diffraction of waves due to the shape of the impermeable rigid upright structure, subject to the excitation of a plane simple harmonic wave coming from infinity. In this study, a finite difference technique for the numerical solution is applied to the boundary integral equation obtained for wave potential. The numerical solution is verified with the analytic solution. The model is applied to various structures, such as the detached breakwater (3L${\times}$0.1L), bird-type breakwater(318L${\times}$0.17L), cylinder-type and crescent -type structure (2.89L${\times}$0.6L, 0.8L${\times}$0.26L).The result are presented in wave height amplification factors and wave height diagram. Also, the amplification factors across the structure or 1 or 2 wavelengths away from the structure are compared with each given case. From the numerical simulation for the various boundary types of structure, we could figure out the transformation pattern of waves and predict the waves and predict the wave intensity in the vicinity of large artificial structures.

  • PDF

복잡지형의 대기확산모델 비교 (Comparison of Complex Terrain Dispersion Models)

  • 김영성;오현선
    • 한국대기환경학회지
    • /
    • 제14권2호
    • /
    • pp.81-94
    • /
    • 1998
  • Six complex terrain dispersion models recommended by the U. S. Environmental Protection Agency were investigated using a hypothetical case in which a plume approaches complex terrain. The six models considered were Valley, CTSCREEN, COMPLEX 1, SHORTZ, RTDM, and CTDMPLUS, the latter four being closely studied. Highest concentrations were predicted for 48 receptors and plume behaviors were compared for stable and unstable meteorological conditions. Under stable conditions, ground-level concentrations were determined by the height of the plume centerline above the terrain. The concentrations estimated by SHORTZ and COMPLEX I were higher than those estimated by CTSCREEN, with CTDMPLUS predicting the lowest concentrations. In particular, the height of the lift midpoint, as well as the co.nterline of the plume, are important in the model calculation of CTDMPLUS. Under unstable conditions, the vertical dispersion plays a key role in determining ground -level concentrations. For this case, concentrations predicted by CTDMPLUS were the 'highest, whereas those predicted by SHORTZ were the lowest. Concentration distributions predicted by CTDMPLUS are quite similar to typical Gaussian distributions even on complex terrain, except for a slight shift of the plume centerline due to the of(tract of the geostrophic wind. In addition,24-hour average concentrations were estimated for comparison with results from the Valley model. Among the four models studied closely, CTDMPLUS predicted the lowest 24-hour average concentrations, but the concentrations estimated by Valley were lower than those estimated by CTDMPLUS.

  • PDF

GMA 용접공정에서 공정변수 선정을 위한 민감도 분석에 관한 연구 (A Study on Sensitivity Analysis for Selecting the Process Parameters in GMA Welding Processes)

  • 김일수;심지연;김인주;김학형
    • 한국공작기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.30-35
    • /
    • 2008
  • As the quality of a weld feint is strongly influenced by process parameters during the welding process, an intelligent algorithms that can predict the bead geometry and shape to accomplish the desired mechanical properties of the weldment should be developed. This paper focuses on the development of mathematical models fur the selection of process parameters and the prediction of bead geometry(bead width, bead height and penetration) in robotic GMA(Gas Metal Arc) welding. Factorial design can be employed as a guide for optimization of process parameters. Three factors were incorporated into the factorial model: arc current, welding voltage and welding speed. A sensitivity analysis has been conducted and compared the relative impact of three process parameters on bead geometry in order to verify the measurement errors on the values of the uncertainty in estimated parameters. The results obtained show that developed mathematical models can be applied to estimate the effectiveness of process parameters for a given bead geometry, and a change of process parameters affects the bead width and bead height more strongly than penetration relatively.