• Title/Summary/Keyword: Height Prediction

Search Result 581, Processing Time 0.023 seconds

DIVERGENT SELECTION FOR POSTWEANING FEED CONVERSION IN ANGUS BEEF CATTLE V. PREDICTION OF FEED CONVERSION USING WEIGHTS AND LINEAR BODY MEASUREMENTS

  • Park, N.H.;Bishop, M.D.;Davis, M.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.3
    • /
    • pp.441-448
    • /
    • 1994
  • Postweaning performance data were obtained on 187 group fed purebred Angus calves from 12 selected sires (six high and six low feed conversion sires) in 1985 and 1986. The objective of this portion of the study was to develop prediction equations for feed conversion from a stepwise regression analysis. Variables measured were on-test weight (ONTSTWT), on-test age (ONTSTAG), five weights by 28-d periods, seven linear body measurements: heart girth (HG), hip height (HH), head width (HDW), head length (HDL), muzzle circumference (MC), length between hooks and pins (HOPIN) and length between shoulder and hooks (SHHO), and backfat thickness (BF). Stepwise regressions for maintenance adjusted feed conversion (ADJFC) and unadjusted feed conversion (UNADFC) over the first 140 d of the test, and total feed conversion (FC) until progeny reached 8.89 mm of back fat were obtained separately by conversion groups and sexes and for combined feed conversion groups and sexes. In general, weights were more important than linear body measurements in prediction of feed utilization. To some extent this was expected as weight is related directly to gain which is a component of feed conversion. Weight at 112 d was the most important variable in prediction of feed conversion when data from both feed conversion groups and sexes were combined. Weights at 84 and 140 d were important variables in prediction of UNADFC and FC, respectively, of bulls. ONTSTWT and weight at 140 d had the highest standardized partial regression coefficients for UNADFC and ADJFC, respectively, of heifers. Results indicated that linear measurements, such as MC, HDL and HOPIN, are useful in prediction of feed conversion when feed in takes are unavailable.

A Study on the Wave-height Distribution of Multidirectional Random Waves at the Concave Corner by Refracted Breakwater Systems (우각부 방파제의 우각부 부근에서의 다방향불규칙 파랑의 파고분포에 관한 연구)

  • Lee, Hong-Sik;Kim, Sung-Duk
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.5
    • /
    • pp.429-438
    • /
    • 2008
  • The present study is to predict the multidiretional random wave height at the front face and concave corner of a refracted breakwater which is not straight. The numerical simulation on wave height at the front face of an insular breakwater is performed by using the boundary element method, and obtained results have been compared with those of exact- and analytical solutions of the eigenfunction presented by Goda et al. (1971) and the other existing numerical solution. Also, the results of wave-height distribution due to the refracted breakwater have been validated through comparisons with previous results of analytical solution. Based on the validation through these comparisons, several wave-height distributions at the interested region have been illustrated for various conditions related with concave corner angles and the wave incidence, and then the prediction of wave height are simulated at the front face and concave corner of a refracted breakwater under construction currently. Excellent agreements have been obtained in all cases, and this study can effectively be utilized for predicting random waves for various breakwater system.

The Analysis of Terrain Height Variance Spectra over the Korean Mountain Region and Its Impact on Mesoscale Model Simulation (한반도 산악 지역의 지형분산 스펙트럼과 중규모 수치모의에서의 효과 분석)

  • An, Gwang-Deuk;Lee, Yong-Hui;Jang, Dong-Eon;Jo, Cheon-Ho
    • Atmosphere
    • /
    • v.16 no.4
    • /
    • pp.359-370
    • /
    • 2006
  • Terrain height variance spectra for the Korean mountain region are calculated in order to determine an adequate grid size required to resolve terrain forcing on mesoscale model simulation. One-dimensional spectral analysis is applied to specifically the central-eastern part of the Korean mountain region, where topographical-scale forcing has an important effect on mesoscale atmospheric flow. It is found that the terrain height variance spectra in this mountain region has a wavelength dependence with the power law exponents of 1.5 at the wavelength near 30 km, but this dependence is steeply changed to 2.5 at the wavelength less than 30 km. For the adequate horizontal grid size selection on mesoscale simulation two-dimensional terrain height spectral analysis is also performed. There is no directionality within 50% of spectral energy region, so one-dimensional spectral analysis can be reasonably applied to the Korea Peninsula. According to the spectral analysis of terrain height variance, the finer grid size which is higher than 6 km is required to resolve a 90% of terrain variance in this region. Numerical simulation using WRF (Weather Research and Forecasting Model) was performed to evaluate the effect of different terrain resolution in accordance with the result of spectral analysis. The simulated results were quantitatively compared to observations and there was a significant improvement in the wind prediction across the mountain region as the grid space decreased from 18 km to 2 km. The results will provide useful guidance of grid size selection on mesoscale topographical simulation over the Korean mountain region.

The Determination and Prediction of Pine to Oak Forest Succession in Sugadaira, Central Japan

  • Jun, Kato;Hayashi, Ichiroku
    • The Korean Journal of Ecology
    • /
    • v.26 no.4
    • /
    • pp.155-163
    • /
    • 2003
  • In order to analyze the succession process from a pine forest to an oak forest, the tree growth of Pinus densiflora and Quercus mongolica ssp. crispula was monitored in a permanent quadrat for 23 years. The measurements were carried out for the stem diameter (DBH) of Pinus densiflora between 1977 and 1999 and for the height of Quercus mongolica ssp. crispula saplings between 1998 and 2000. The floristic composition and the locations of the individual P. densiflora and Q. mongolica ssp. crispula trees and saplings in the quadrat were recorded. P densiflora and Q. mongolica ssp. crispula individuals were randomly distributed within the quadrat. The relative growth rates (RGR) of DBH in P. densiflora were 0.085 $yr^{-1}$ for large trees and 0.056 $yr^{-1}$ for small trees in 1977. The RGR of height for Q. mongolica ssp. crispula was 0.122 $yr^{-1}$. The growth curve for DBH of P. densiflora was approximated by the logistic equation: $$DBH(t) = 30 {[1+1.16exp(-0.13 t)]}^{-1}$$ where DBH (t) the DBH (cm) in year t and t is the number of years since 1977. The growth in height of P. densiflora and Q. mongolica ssp. crispula was described by following equations: $$H (t) = 20.2 {[1+0.407exp(-0.137 t)]}^{-1} (P. densiflora)$$ $$H (t) = 30 {[1+20.7exp(-0.122 t)}^{-1} (Q. mongolica ssp. crispula)$$ Where H (t) is the tree height (m) in year t and t is the number of years since 1977 in P. densiflora and 1998 in Q. mongolica ssp. crispula. With these equations we predicted that the height of Q. mongolica ssp. crispula increases from 2 m in 1999 to 20 m in 2029. Therefore, Q. mongolica ssp. crispula and P. densiflora will be approximately the same height in 2029. The years required for succession from a pine forest to an oak forest are expected 33 with the range between 23 and 44 years.

Acoustic Performance Evaluation and Prediction for Low Height Noise Barriers Installed Adjacent To Rails Using Scale Down Model (축척 모형을 이용한 근접 저상 방음벽의 음향성능평가 및 예측)

  • Yoon, Je Won;Jang, Kang Seok;Cho, Yong Thung
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.124-134
    • /
    • 2016
  • Research on low height noise barriers installed adjacent to railways to reduce the height of the noise barrier has actively progressed in many countries except Korea. The performance of low height noise barriers is evaluated to identify barrier acoustic characteristics using a scale model of the barrier in the present research. As shown in the experimental results, if it is considered the installation of 'ㄱ' type noise barrier, sound absorption material should be installed on both the top and the vertical surfaces of the barrier to improve insertion loss. Also, an analytical method such as the boundary element method, rather than a simple empirical equation, is required to evaluate the insertion loss of the barrier. In addition, noise level increase in passenger position is very small if a barrier with sound absorption material is installed. Finally, the two dimensional boundary element method is implemented to predict the acoustic characteristics of the low height barrier; the possibility of the application is confirmed from a comparison of the results of measurements and predictions.

Prediction Equations of Pulmonary Function Parameters Derived from the Forced Expiratory Spirogram for Healthy Adults over 50 years old in rural area (농촌지역 50세 이상 인구의 노력성호기곡선을 이용한 폐활량측정법 검사지표의 추정정상치)

  • Kim, Won-Young;Kim, Kwang-Hyun;Youn, Boung-Han;Lee, Seung-Uk;Cho, Chul-Hyun;Choi, Jin-Su;Kim, Hun-Nam
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.3
    • /
    • pp.536-545
    • /
    • 1998
  • Background: The studies on prediction equations of pulmonary function parameters for adults in Korea have been performed in a reference population mainly consisted of young and middle ages. So they included a relatively few elderly who conducted pulmonary function test frequently in clinic. We established prediction equations of pulmonary function parameters for healthy adults over 50 years old in rural area and compared this results with those of other studies. Therefore we attempted to consider normative values of pulmonary function tests for elderly in Korea. Method: Five hundred thirty-three women and men over 50 years old in rural area were participated. A "healthy" subgroup of 110 women and 32 men were identified by excluding those who had conditions that negatively influenced pulmonary function. We derived prediction equations for FVC, $FEV_1$ and $FEV_1%$ by multiple linear regression method from their age, heights and weights in each sex. Results: Prediction equations for FVC and $FEV_1$ in each sex were derived as follows Male; FVC (L)=0.02488Height(cm)-0.0269Age(years)+0.493 $FEV_1(L)$=0.01874Weight(kg)-0.0282Age(years)+2.906 Female; FVC(L)=0.02160Height(cm)-0.0192Age(years)-0.0125 $FEV_1(L)$=0.01720Height(cm)-0.0194Age(years)+0.3890 Prediction equations for $FEV_1%$ were not derived because $FEV_1%$ didn't have statistically significant terms. Comparing Predicted values that were calculated by substitution into the equations of various studies of mean values of age, heights and weights from this study, FVC and $FEV_1$ values in men of this study were lower than those of other studies. In women, FVC and $FEV_1$ values of this study were as similar as or lower than those of the study conducted for healthy elderly blacks in U.S.A respectively. Conclusion: We have got prediction equations of pulmonary function parameters which were driven from forced expiratory spirogram in adults over 50 years old in rural area. Predicted values of this study were lower than those of other studies which were conducted in Korea. So we consider that the study for spirometry reference values for elderly Korean using the method compatible with ATS recommendation need to be conducted more frequently forward.

  • PDF

The Height of Fall as a Predictor of Fatality of Fall (추락 후 사망 예측인자로서의 추락 높이)

  • Suh, Joo Hyun;Eo, Eun Kyung;Jung, Koo Young
    • Journal of Trauma and Injury
    • /
    • v.18 no.2
    • /
    • pp.101-106
    • /
    • 2005
  • Purpose: The number of the deceased from free-fall is increasing nowadays. Free-fall comes to a great social problem in that even the survivor will be suffering for cord injury or brain injury, and so on. We analyzed the cases of free-fall patients to find out whether the injury severity is mainly correlated with the height of fall. Methods: We retrospectively investigated the characteristics of patients, who fall from the height above 2m from January 2000 to August 2004. We excluded the patients who transferred to other hospital, transferred from other hospital, and not known the height of fall. 145 patients were evaluated. Variables included in data analysis were age, height of fall, injury severity score (ISS), the being of barrier, and the survival or not. To find out the correlation between height of fall and death, we used receive operating characteristics (ROC) curve analysis. Results: The mean age of patients was $36.5{\pm}19.4$ years old. 110 were male and 35 were female. Mean height of fall was $11.1{\pm}8.5m$. 51 patients (35.2%) were died and 30 patients of them (58.9%) got emergency room on dead body. The mean height of fall is $8.9{\pm}5.8m$ for 94 survivors and $15.2{\pm}11.0m$ for the 51 deceased (p<0.001). The area under the ROC curve was 0.646, which means the height of fall was not adequate factor for predicting for death. At 13.5m, as cut?off value, sensitivity is 52.9%, specificity is 86.2%, positive predictive value is 67.5% and negative predictive value is 77.1%. There were statistical differences in mortality rate and ISS between 'below 13.5m group' and 'above 13.5m group', but there was not statistical difference in head and neck AIS. Conclusion: The height of fall is not adequate factor for prediction of death. So other factors like intoxication or not, the being of barrier or protection device need to be evaluated for predicting of free-fall patient's death.

Extratropical Prediction Skill of KMA GDAPS in January 2019 (기상청 전지구 예측시스템에서의 2019년 1월 북반구 중고위도 지역 예측성 검증)

  • Hwang, Jaeyoung;Cho, Hyeong-Oh;Lim, Yuna;Son, Seok-Woo;Kim, Eun-Jung;Lim, Jeong-Ock;Boo, Kyung-On
    • Atmosphere
    • /
    • v.30 no.2
    • /
    • pp.115-124
    • /
    • 2020
  • The Northern Hemisphere extratropical prediction skill of the Korea Meteorological Administration (KMA) Global Data Assimilation and Prediction System (GDAPS) is examined for January 2019. The real-time prediction skill, evaluated with mean squared skill score (MSSS) of 30-90°N geopotential height field at 500 hPa (Z500), is ~8 days in the troposphere. The MSSS of Z500 considerably decreases after 3 days mainly due to the increasing eddy errors. The eddy errors are largely explained by the eddy-phased errors with minor contribution of amplitude errors. In particular, planetary-scale eddy errors are considered as a main reason of rapidly increasing errors. It turns out that such errors are associated with the blocking highs over North Pacific (NP) and Euro-Atlantic (EA) regions. The model overestimates the blocking highs over NP and EA regions in time, showing dependence of blocking predictability on blocking initializations. This result suggests that the extratropical prediction skill could be improved by better representing blocking in the model.

Prediction of ship power based on variation in deep feed-forward neural network

  • Lee, June-Beom;Roh, Myung-Il;Kim, Ki-Su
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.641-649
    • /
    • 2021
  • Fuel oil consumption (FOC) must be minimized to determine the economic route of a ship; hence, the ship power must be predicted prior to route planning. For this purpose, a numerical method using test results of a model has been widely used. However, predicting ship power using this method is challenging owing to the uncertainty of the model test. An onboard test should be conducted to solve this problem; however, it requires considerable resources and time. Therefore, in this study, a deep feed-forward neural network (DFN) is used to predict ship power using deep learning methods that involve data pattern recognition. To use data in the DFN, the input data and a label (output of prediction) should be configured. In this study, the input data are configured using ocean environmental data (wave height, wave period, wave direction, wind speed, wind direction, and sea surface temperature) and the ship's operational data (draft, speed, and heading). The ship power is selected as the label. In addition, various treatments have been used to improve the prediction accuracy. First, ocean environmental data related to wind and waves are preprocessed using values relative to the ship's velocity. Second, the structure of the DFN is changed based on the characteristics of the input data. Third, the prediction accuracy is analyzed using a combination comprising five hyperparameters (number of hidden layers, number of hidden nodes, learning rate, dropout, and gradient optimizer). Finally, k-means clustering is performed to analyze the effect of the sea state and ship operational status by categorizing it into several models. The performances of various prediction models are compared and analyzed using the DFN in this study.

Unsteady Aerodynamic Characteristics of Floating Offshore Wind Turbine According to Wave Height and Wave Angular Frequency (해상용 부유식 풍력 발전기의 파고와 파주기에 따른 비정상 공력 특성 연구)

  • Jeon, Minu;Kim, Hogeon;Lee, Soogab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.184.1-184.1
    • /
    • 2010
  • Floating wind turbines have been suggested as a feasible solution for going further offshore into deeper waters. However, floating platforms cause additional unsteady motions induced by wind and wave conditions, so that it is difficult to predict annual energy output of wind turbines by using conventional power prediction method. That is because sectional inflow condition on a rotor plane is varied by unsteady motion of floating platforms. Therefore, aerodynamic simulation using Vortex Lattice Method(VLM) were used to investigate the influence of motion on the aerodynamic performance of a floating offshore wind turbine. Simulation with individual motion of offshore platform were compared to the case of onshore platform and carried out according to the wave height and the wave angular frequency.

  • PDF