• Title/Summary/Keyword: Height Determination

Search Result 341, Processing Time 0.025 seconds

Accuracy Analysis of GPS Ellipsoidal Height Determination in Accordance with the Surveying Conditions (관측조건에 따른 GPS 타원체고 결정의 정확도 분석)

  • Lee, Suk Bae;Auh, Su Chang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.4
    • /
    • pp.67-74
    • /
    • 2015
  • GNSS/Leveling technology makes it possible to get geoidal height geometrically using GNSS and Leveling technology. GNSS/Geoid technology refers to a technology for obtaining orthometric height by subtracting geoidal height achieved by Geoid technology from ellipsoidal height achieved by GNSS technology. The purpose of this study is to verify the accuracy of the ellipsoidal height determination in order to verify the accuracy of the orthometric height determination by the GNSS/Geoid technology. For the study, a test bed was selected in Kyungnam province and GNSS Static surveying was accomplished in the test bed and then the GNSS data was processed in accordance with various analysis conditions. So, it was verified the accuracy of the ellipsoidal heights determination in accordance with the surveying conditions under the GNSS Static surveying. According to the research results, to ensure the 3cm goal accuracy of the ellipsoidal height determination, it should be surveyed by four fixed points on the survey area periphery and more than two hours of the GNSS occupation time, And also, it was found that should be limited to a baseline distance of 20km under the GNSS Static surveying.

Accuracy Analysis of GNSS-derived Orthometric Heights on the Leveling Loop Disconnected Area

  • Jung, Sung Chae;Kwon, Jay Hyoun;Lee, Jisun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • To compensate for the shortcomings of spirit leveling, research on the determination of GNSS (Global Navigation Satellite System)-derived orthometric height has been actively carried out. However, most analyses were primarily performed inland. In this study, the influences of the arrangement of control points, observation duration, and geoid model on the accuracy of the GNSS-derived orthometric height have been analyzed to suggest the proper method to apply the determination of GNSS-derived orthometric height to the leveling loop disconnected area. As a result, it was found that two known points located near the unknown points need to be fixed in the leveling loop disconnected area. Further, 3 cm level of accuracy can be achieved if the GNSS survey is performed over two days, for four hours per day. In terms of the geoid model, the latest national geoid model should be applied rather than the EGM08 (Earth Gravitational Model 2008) to minimize regional bias and increase accuracy. Future research is necessary to apply the determination of the GNSS-derived orthometric height technique as a method to connect with the islands because the vertical reference system used inland and that used for the islands in Korea are still different.

Geoid Determination in South Korea from a Combination of Terrestrial and Airborne Gravity Anomaly Data

  • Jekeli, Christopher;Yang, Hyo Jin;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.567-576
    • /
    • 2013
  • The determination of the geoid in South Korea is a national imperative for the modernization of height datums, specifically the orthometric height and the dynamic height, that are used to monitor hydrological systems and environments with accuracy and easy revision, if necessary. The geometric heights above a reference ellipsoid, routinely obtained by GPS, lead immediately to vertical control with respect to the geoid for hydrological purposes if the geoid height above the ellipsoid is known accurately. The geoid height is determined from gravimetric data, traditionally ground data, but in recent times also from airborne data. This paper illustrates the basic concepts for combining these two types of data and gives a preliminary performance assessment of either set or their combination for the determination of the geoid in South Korea. It is shown that the most critical aspect of the combination is the gravitational effect of the topographic masses above the geoid, which, if not properly taken into account, introduces a significant bias of about 8 mgal in the gravity anomalies, and which can lead to geoid height bias errors of up to 10 cm. It is further confirmed and concluded that achieving better than 5 cm precision in geoid heights from gravimetry remains a challenge that can be surmounted only with the proper combination of terrestrial and airborne data, thus realizing higher data resolution over most of South Korea than currently available solely from the airborne data.

Saddle Height Determination by Effectiveness of Pedal Reaction Force during Cycle Pedaling (사이클 페달링 시 페달반력 효율성을 고려한 적정 안장높이 결정방법)

  • Bae, Jae-Hyuk;Seo, Jeong-Woo;Kang, Dong-Won;Choi, Jin-Seung;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.4
    • /
    • pp.417-423
    • /
    • 2014
  • The purpose of this study was to compare two saddle height determination methods by the effectiveness of pedal reaction force. Ten male subjects (age: $24.0{\pm}2.4years$, height: $175.1{\pm}5.4cm$, weight: $69.3{\pm}11.1kg$, inseam: $77.8{\pm}4.5cm$) participated in three minutes, 60 rpm cycle pedaling tests with the same load and cadence. Subject's saddle height was determined by $25^{\circ}$ knee flexion angle (K25) when the pedal crank was at the 6 o'clock position (knee angle method) and 97% (T97), 100% (T100), 103% (T103) of trochanter height (trochanteric method). The RF (resultant force), EF (effective force), and IE (index of effectiveness) were compared by measuring 3D motion and 3-axis pedal reaction force data during 4 pedaling phases (phase1: $330^{\circ}-30^{\circ}$, phase2: $30^{\circ}-150^{\circ}$, phase3: $150^{\circ}-210$, phase4: $210^{\circ}-330^{\circ}$). Results showed that there were significant differences in EF at phase1 between T97 and K25, in EF at phase4 between T100 and T103, in IE at total phase between T97 and K25, between T100 and T103, in IE at phase1 & phase2 between T97 and K25. There was higher IE in the K25 than any other saddle heights, which means that K25 was better pedaling effectiveness than the trochanteric method. Therefore it was suggested the saddle height as 103.7% of trochanter height that converted from K25.

THE EFFECT OF SURFACE METEOROLOGICAL MEASUREMENTS ON PRECISION GPS HEIGHT DETERMINATION

  • Wang Chuan-Sheng;Liou Yuei-An;Wang Cheng-Gi
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.178-181
    • /
    • 2005
  • The positioning accuracy of the Global Positioning System (GPS) has been improved considerably during the past two decades. The main error sources such as ionospheric refraction, orbital uncertainty, antenna phase center variation, signal multipath, and tropospheric delay have been reduced substantially, if not eliminated. In this study, the GPS data collected by the GPS receivers that were established as continuously operating reference stations by International GNSS Service (IGS), Ministry of the Interior (MOl), Central Weather Bureau (CWB), and Industrial Technology Research Institute (ITRI) Of Taiwan are utilized to investigate the impact of atmospheric water vapor on GPS positioning determination. The surface meteorological measurements that were concurrently acquired by instruments co-located with the GPS receivers include temperature, pressure and humidity data. To obtain the influence of the GPS height on the proposed impact study. A hydrodynamic ocean tide model (GOTOO.2 model) and solid earth tide were used to improve the GPS height. The surface meteorological data (pressure, temperature and humidity) were introduced to the data processing with 24 troposphere parameters. The results from the studies associated with different GPS height were compared for the cases with and without a priori knowledge of surface meteorological measurements. The finding based on the measurements in 2003 is that the surface meteorological measurements have an impact on the GPS height. The associated daily maximum of the differences is 1.07 cm for the KDNM station. The impact is reduced due to smoothing when the average of the GPS height for the whole year is considered.

  • PDF

Determination of Shoulder Height for Ball Bearing using Contact Analysis (접촉해석을 이용한 볼 베어링의 Shoulder Height 결정)

  • Kim Tae-Wan;Cho Yong-Joo;Yoon Ki-Chan;Park Chang-Nam
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.377-383
    • /
    • 2003
  • In this study, the methodology for determination of shoulder height in the internal shape design of ball bearing using 3D contact analysis is proposed. The quasi-static analysis of a ball bearing was performed to calculate the distribution of applied contact load and angles among the rolling elements. From each rolling element loads and the contact geometry between ball and inner/outer raceway, 3D contact analyses using influence function are conducted. These methodology is applied to HDD ball bearing. The critical axial load and the critical shoulder height which are not affected by edge in the present shoulder height is calculated. The proposed methodology may be applied to other rolling element bearing for the purpose of reducing the material cost and improving the efficiency of the bearing design process.

  • PDF

The Effect of Surface Meteorological Measurements on High-precision GPS Positing Determination

  • Wang, Chuan-Sheng;Liou, Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.625-627
    • /
    • 2003
  • In this study, the Global Positioning System (GPS) data collected by the GPS receivers that were established as continuously operating reference stations by Central Weather Bureau and Industrial Technology Research Institute of Taiwan are utilized to investigate the impact of atmospheric water vapor on GPS positioning determination. The surface meteorological measurements that were concurrently acquired by instruments co-located with the GPS receivers include temperature, pressure and humidity data. To obtain the influence of the baseline length on the proposed impact study, four baselines are considered according to the locations of the permanent GPS sites. The length of the shorter baseline is about 66km, while the longer is about 118 km. The results from the studies associated with different baseline lengths and ellipsoid height were compared for the cases with and without a priori knowledge of surface meteorological measurements. The finding based on 66 days measurements is that the surface meteorological measurements have a significant impact on the positioning determination for the longer baseline case. The associated daily maximum differences are 1.1 cm and 1.4 cm for the baseline and ellipsoid height respectively. The corresponding biases are -8.1 mm in length and -7.3 mm in el lipsoid height.

  • PDF

DETERMINATION OF GPS HEIGHT WITH INCORPORATION OF USING SURFACE METEOROLOGICAL MEASUREMENTS

  • Wang, Chuan-Sheng;Liou, Yuei-An;Yeh, Ta-Kang
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.313-316
    • /
    • 2008
  • Although the positioning accuracy of the Global Positioning System (GPS) has been studied extensively and used widely, it is still limited due to errors from sources such as the ionospheric effect, orbital uncertainty, antenna phase center variation, signal multipath and tropospheric influence. This investigation addresses the tropospheric effect on GPS height determination. Data obtained from GPS receivers and co-located surface meteorological instruments in 2003 are adopted in this study. The Ministry of the Interior (MOl), Taiwan, established these GPS receivers as continuous operating reference stations. Two different approaches, parameter estimation and external correction, are utilized to correct the zenith tropospheric delay (ZTD) by applying the surface meteorological measurements (SMM) data. Yet, incorrect pressure measurement leads to very poor accuracy. The GPS height can be affected by a few meters, and the root-mean-square (rms) of the daily solution ranges from a few millimeters to centimeters, no matter what the approach adopted. The effect is least obvious when using SMM data for the parameter estimation approach, but the constant corrections of the GPS height occur more often at higher altitudes. As for the external correction approach, the Saastamoinen model with SMM data makes the repeatability of the GPS height maintained at few centimeters, while the rms of the daily solution displays an improvement of about 2-3 mm.

  • PDF

Geometric Geoid Determination in South Korea using GPS/Levelling Data

  • Yun, Hong-Sic
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.2
    • /
    • pp.285-289
    • /
    • 1995
  • This paper describes the determination of geoid using height data measured by GPS and Spirit Levelling. The GPS data of the 88 stations were used to determine the geoid undulation (N) which can be easily obtained by subtracting the orthometric height(H) from the ellipsoidal height(h). From the geoid undulation (N) calculated at each station mentioned above, geoid plots with a contour interval of 0.25 m were drawn using two interpolation methods. The following interpolation methods were applied and compared with each other: Minimum Curvature Method and Least Squares Fitted Plane. Comparison between geometric geoid and gravimetric geoid undulation by FFT technique was carried out.

  • PDF

Determination of the Optimal Height using the Simplex Algorithm in Network-RTK Surveying (Network-RTK측량에서 심플렉스해법을 이용한 최적표고 결정)

  • Lee, Suk Bae;Auh, Su Chang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.35-41
    • /
    • 2016
  • GNSS/Geoid positioning technology allows orthometric height determination using both the geoidal height calculated from geoid model and the ellipsoidal height achieved by GNSS survey. In this study, Network-RTK surveying was performed through the Benchmarks in the study area to analyze the possibility of height positioning of the Network-RTK. And the orthometric heights were calculated by applying the Korean national geoid model KNGeoid13 according to the condition of with site calibration and without site calibration and the results were compared. Simplex algorithm was adopted for liner programming in this study and the heights of all Benchmarks were calculated in both case of applying site calibration and does not applying site calibration. The results were compared to Benchmark official height of the National Geographic Information Institute. The results showed that the average value of the height difference was 0.060m, and the standard deviation was 0.072m in Network-RTK without site calibration and the average value of the height difference was 0.040m, and the standard deviation was 0.047m in Network-RTK with the application of the site calibration. With linearization method to obtain the optimal solution for observations it showed that the height determination within 0.033m was available in GNSS Network-RTK positioning.