• Title/Summary/Keyword: Heel contact

Search Result 66, Processing Time 0.022 seconds

Effects of Heel Contact Methods of Stair Ascent on Abdominal Muscle Activation in Healthy Subjects: A Cross-Sectional Pilot Study (계단 오르기 시 발뒤꿈치 접지 방법이 정상인의 복부 근육 활성도에 미치는 영향: 단면 예비연구)

  • Kang, Jeong-Hyeon;Kim, Chang-Yong;Kim, Jae-Hwan;Kim, Hyeong-Dong
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • PURPOSE: This study was to determine the changes of abdominal muscles activation according to the heel contact methods of stair ascent in healthy young adults. METHODS: 33 healthy young subjects (mean age: $26.37{\pm}9.72$ years, age range: 20-32 years) volunteered under two conditions. They were performed stair ascent with heel contact and without heel contact. The effects of heel contact methods were assessed using the surface electromyography (sEMG) analysis during stair ascent for activation of abdominal muscles (internal oblique; IO, transverse abdominis; TrA, external oblique; EO rectus abdominis; RA). The interventions were conducted over three trials in each method, and measurements were performed on each subject by one examiner in three trials. RESULTS: Our results revealed that there were significantly greater increase in the EMG activation of IO and TrA muscles in the performance of stair ascent with heel contact (p<.05) compared to those of stair ascent without heel contact. The results also showed that there were greater decrease in the ratio of abdominal muscle activation in those of stair ascent with heel contact compared with stair ascent without heel contact. CONCLUSION: These findings demonstrated that the method of stair ascent with heel contact would suggest positive evidence for improving activation of abdominal muscles.

Comparisons of Spatial-Temporal Characteristics between Young and Old Adults While Walking: Factors Influencing the Likelihood of Slip-Initiation

  • Kim, Seok-Won;Yun, Hun-Yong;Lockhart, Thurmon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.43-49
    • /
    • 2006
  • A laboratory study was conducted to evaluate if two different age groups(young vs. old) had differences in walking velocity and heel contact velocity and, furthermore, if these gait characteristics could adversely influence initial friction demand characteristics(i.e. RCOF) and the likelihood of slip-initiation. Twenty eight(14 younger and 14 older adults) participated in the study. While wearing a safety harness, all participants walked at their preferred gait speed for approximately 20 minutes on the linear walking track(1.5m× 20m) consisting of two floor-mounted forced plates. During subsequent 20 cameras, respectively. The results indicated that older adults walked slower(i.e., slower whole body center-of-mass velocity), exhibited lower heel contact velocity, and produced lower initial friction demand characteristics (i.e. RCOF) in comparison to younger adults. However, ANCOVA indicated that the diferences in heel contact velocity between the two age groups were due to the effects of walking velocity. The bivariate analysis further suggested that walking velocity was correlated to RCOF and heel contact velocity, while heel contact velocity was not found to be correlated to RCOF. In conclusion, could be a better indicator for predicting initial friction demand characteristics(i.e. RCOF) not hel contact velocity.

The Study on Musculoskeletal Effects of Heel Types (구두 굽의 형태가 인체의 근골격계에 미치는 영향에 관한 연구)

  • Lee, Chang-Min;Jeong, Eun-Hui
    • Journal of the Ergonomics Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.39-48
    • /
    • 2004
  • In terms of women engaged in clerical job. working time of the workers who mainly keep standing with their high-heeled shoes on has been increasing. According]y. they are exposed to many kinds of foot deformation caused by loads of lower back and lower extremities due to high-heeled shoes. The type of heels they usually wear are diverse though the hight is same. In this study. we investigated most women's favorite styles of shoes concerned with heights. types and contact areas of the heels. Hence. we designed three kinds of shoes for an experiment: their contact areas with ground are 1 cm2. 2-4 cm2 and over 9 cm2 according to the heel heights. respectively. To investigate the biomechanical effects. analysis of motion and EMG were applied to the experiments. In addition. foot pressure distribution was measured for more detailed analysis. Six healthy young women were participated in this experiments. The result showed the heel becoming higher and narrower increased not only fluctuation of CBM(Center of Body Mass). but also the load of low back muscle and lower extremities. Accordingly. there was significant difference among types of the heel in terms of the role supporting load of the body. though the height is same. Especially. the difference among the pressures on a foot was most significant. In conclusion. we verified biomechanical effects are related with the contact area of a heel with ground as well as the hight.

A Study on the Kinematic Variables in Different Safety Shoes and Applying Insole During Walking (안전화 형태와 인솔착용 유무에 따른 보행동작시 하지부위에 대한 운동학적 부하 분석)

  • Kim, Jung-Jin;Choi, Sang-Bock;Cha, Sang-Eon
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.1
    • /
    • pp.35-45
    • /
    • 2008
  • This study was performed to compare the kinematics among three different safety shoes(type 1: ergonomically designed and high quality shoes, 2: curved and cushioned safety shoes, and 3: regular safety shoes) and to find the effect of insole during walking. Ten healthy subjects were recruited for this study. The range of motion of knee and ankle joint, angle of rear foot and angle of heel contact were measured using a three dimensional motion analysis system. In the second peak, the angle of heel contact showed statistically significant difference between safety shoes and insole, however, there was no statistical significance among three different safety shoes. The angle of ankle increased significantly at initial contact, first peak, the second peak and the toe off phase compared with type 1 and 2 safety shoes, and the angle of ankle showed statistically significant difference between with and without applying the insole. During the first peak, the second peak and the toe off phase, the angle of knee was statistical significance between safety shoes and insole. In heel contact, the angles of Achilles' tendon showed statistically significant difference between safety shoes and insole. The rear foot angles showed statistically significant difference between safety shoes and insole during heel contact and early heel contact. These results suggest that the type 1 safety shoes were superior to others in the statistics, and applying insole could be a possible method to prevent fatigue of lower extremity and musculoskeletal disorders. Further studies are needed to find the effect of ergonomically designed safety shoes and insole on practical value in prevention of musculoskeletal disorder, fatigue and satisfaction of workers.

Relationship between the Impact Peak Force and Lower Extremity Kinematics during Treadmill Running

  • Ryu, Ji-Seon;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.3
    • /
    • pp.159-164
    • /
    • 2018
  • Objective: The aims of this study were to determine the impact peak force and kinematic variables in running speed and investigate the relationship between them. Method: Thirty-nine male heel strike runners ($mean\;age=21.7{\pm}1.6y$, $mean\;mass=72.5{\pm}8.7kg$, $mean\;height=176.6{\pm}6.1cm$) were recruited in this investigation. The impact peak forces during treadmill running were assessed, and the kinematic variables were computed using three-dimensional data collected using eight infrared cameras (Oqus 300, Qualisys, Sweden). One-way analysis of variance ANOVAwas used to investigate the influence of the running speed on the parameters, and Pearson's partial correlation was used to investigate the relationship between the impact peak force and kinematic variables. Results: The running speed affected the impact peak force, stride length, stride frequency, and kinematic variables during the stride phase and the foot angle at heel contact; however, it did not affect the ankle and knee joint angles in the sagittal plane at heel contact. No significant correlation was noted between the impact peak force and kinematic variables in constantrunning speed. Conclusion: Increasing ankle and knee joint angles at heel contact may not be related to the mechanism behind reducing the impact peak force during treadmill running at constant speed.

Biomechanical Analysis of Throwing Movement between Skilled and Unskilled High School Students (남자 고등학생 숙련자.비숙련자의 던지기 동작에 대한 운동역학적 비교 분석)

  • Kough, Hyung-Jeek;Ju, Myung-Duck
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.1
    • /
    • pp.87-98
    • /
    • 2009
  • This study was conducted to compare biomechanical differences in throwing movement between skilled and unskilled high school students using three-dimensional analysis system with a force platform. The findings indicated that skilled students showed shorter throwing time, faster horizontal speed of (1) the center of mass at heel contact of left foot, (2) the forearm throughout swing phase, (3) the hand after heel contact while unskilled students showed faster horizontal speed of, (1) the center of mass after heel contact and (2) the hand at heel contact of left foot. Skilled students showed greater (1) shoulder angle during throwing, (2) elbow angle after take off of foot, (3) peak vertical ground reaction force during throwing and (4) peak anterior-posterior ground reaction force at heel contact of right foot. While skilled students showed leaning backward of the trunk during throwing, unskilled students showed leaning forward during release phase with leaning backward before release.

In-shoe Loads during Treadmill Running (트레드밀 달리기시 신발 내부의 부하에 관한 연구)

  • Lee, Ki-Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.2
    • /
    • pp.105-119
    • /
    • 2004
  • To enhance our understanding of the loads on the foot during treadmill running, we have used a pressure-sensitive insole system to determine pressure, rate of loading and impulse distributions on the plantar surface during treadmill running, both in minimally cushioned footwear and in cushioned shoes. This report includes pressure, rate of loading, impulse and contact time data from a study of ten subjects running on a treadmill at 4.0m/s. Among heel-toe runners, the highest peak pressures and highest rates of loading were observed under the centre of the heel and in the medial forefoot. The arch regions were only lightly loaded. Contact time was greater in the forefoot than in the heel. Two-thirds of the impulse recorded during the step was the result of forces applied through the forefoot, mostly in the region of the metatarsal heads. The distribution of loads in the shoe suggests that the load distributing properties of the cushioning system are most important in the centre of the heel, under the metatarsal heads and great toe. Shock attenuation is primarily required under the centre of the heel and to lesser extent under the metatarsal heads. Some energy dissipation may be desirable in the heel region because it causes shock to be absorbed with less force. All the 'propulsive' effort is applied through the forefoot. Therefore, this region should as resilient as possible.

Study on the Phases and Testing Standard of Standing to Squatting Position (쭈그려 앉기의 단계화와 표준화된 검사에 대한 연구)

  • Chung, Hyung-Kuk
    • The Journal of Korean Physical Therapy
    • /
    • v.19 no.6
    • /
    • pp.11-15
    • /
    • 2007
  • Purpose: This study examined the various patterns of standing to squatting activities, and reports the testing standard and phases for examining the standing to squatting position. Methods: One thousand, normal college students (500 males, 500 females) volunteered for this study. The patterns are performed by naked eye analysis with two video cameras. Results: The patterns from the standing to squatting position are as follows 1. parallel with the heel on the pattern: 2. parallel with the heel off the pattern: 3. closed with the heel on the pattern: 4. closed with the heel on the pattern: 5. open with the heel on the patternand 6. open with the heel on the pattern. Conclusion: The phases of the standing to squatting position are as follows: phase I from standing to the anterior parts of the knees reaching the anterior limit of the BOS, phase II from phase I until the height of the hip and knee joints are the same, phase III from phase II until there was no full squatting and the heels broke contact with the floor and phase IV from phase III full squatting on the heels in contact with the floor.

  • PDF

Comparison of Heel-rocking Time Between Young Women and Elderly Women (젊은 여성과 고령자 여성의 힐락킹 시간 비교 분석)

  • Yun, Ju-seok;Kim, Ji-Won;Kwon, Yu-Ri;Heo, Jae-Hoon;Jeon, Hyeong-Min;Jeon, Hee-Jun;Eom, Gwang-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1242-1246
    • /
    • 2016
  • Heel rocking phase in gait cycle is from initial contact to forefoot contact. The purpose of this study was to investigate the effect of age on heel rocking time. Seven young women ($21.9{\pm}1.5yrs$) and seven elderly women ($74.1{\pm}6.7yrs$) participated in this study. Subjects wore the shoes equipped with pressure sensors and walked along 10 m walkway at comfortable speeds. Stride time, stance time, and heel rocking time were compared between groups. Stride time was not different between groups (p=0.087). Stance time was longer (p<0.001) but heel rocking time was shorter in the elderly than in the young (p<0.001). The shorter heel-rocking time in elderly women indicates less efficient shock-absorption in the heel-rocking phase, which might be related to the abnormal control and/or reduced performance of ankle dorsiflexors.

The Research on Functional Midsole that can Minimize Forefoot Pressure - Focusing on High-Heeled Pumps Type - (전족부 압력을 최소화할 수 있는 기능성 중창에 관한 연구 - 굽높은 펌프스형을 중심으로 -)

  • Kim, Dong-Yeoub;Choi, Soon-Bok
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.2 s.161
    • /
    • pp.258-268
    • /
    • 2007
  • The purpose of this research is to develop functional midsole that can restrain the heightening of plantar pressure in forefoot pressure so as to develop high-heeled shoes that can lessen foot ailments among women. The pumps shoes used for the research were of the same pumps type last. The variant was heel height, 3cm, 6cm, and 9cm, and the shoes were made in both normal midsole and functional midsole. The variant was applied to investigate the changes of foot pressure on forefoot and hindfoot according to heel height.'Heel Cup' was chosen for modification of functional midsolepumps type. to enlarge contact area in hindfoot, and 'Heel Posting Pad' was attached under sustentaculum tali to suppress the weight moving to forefoot pressure. If such functional parts are developed and used, it is possible to lessen the amount of Pmax or Impulse imposed by high-heeled pumps type on forefoot pressure. This can greatly lessen foot ailments, largely caused by high-heeled shoes, among women.