• Title/Summary/Keyword: Hedysarum

Search Result 5, Processing Time 0.021 seconds

A new species of Hedysarum (Fabaceae, Hedysareae) from Xizang (Tibet), China.

  • Choi, Byoung-Hee;Endo, Yasuhiko;Zhu, Xiang-Yun
    • Korean Journal of Plant Taxonomy
    • /
    • v.41 no.3
    • /
    • pp.267-270
    • /
    • 2011
  • A new species of Hedysarum (Fabaceae, Hedysareae) was found in Tibet, China. This new species, Hedysarum hirtifoliolum, belongs to sect. Hedysarum and is readily distinguishable in having greenish yellow flowers, pubescent above surface of leaflets and transversely obovate loments. So far, it is collected from only one locality in Tibet.

Comparison of Proximate Components, Free Sugar, Vitamin C and Minerals of 16 Kinds of Honey produced in Korea with Manuka Honey (국내산 16종 벌꿀의 일반성분, 유리당, 비타민 C 및 무기질 분석 - 뉴질랜드 마누카꿀과의 비교 -)

  • Paik, Weon-Ki;Kwak, Ae-Kyung;Lee, Myeong-Lyeol;Choi, Yong-Soo;Kim, Hye-Kyung;Choi, Kyungsuk
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.25 no.5
    • /
    • pp.867-879
    • /
    • 2015
  • To confirm basic nutrient contents of Korean honey as a food material, we assessed New Zealand Manuka honey by measuring proximate components, vitamin C and minerals of 16 kinds of honey harvested in South Korea. The proximate composition of each honey sample was as follows: moisture content 18.45~29.84%, crude protein 0.10~0.95% (vs Manuka honey 0.23%), crude fat 0.02~0.60% (vs Manuka honey 0.34%), crude ash 0.01~.52% (vs Manuka honey 0.24%) and carbohydrate 67.90~80.94% (vs Manuka honey 79.39%), respectively. In the case of free sugars analyze by HPLC, fructose showed a content of 26.12~49.84% which was highest in acacia honey and lowest in sorbus honey. Content of glucose was 19.38~36.12% and lowest in chestnut honey, whereas sucrose, lactose, maltose were absent. Total sugar contents were 64.16% which was less than Manuka honey (70.23%) and vitamin C was not detected in all samples. Minerals were detected 15~25 kinds, including K, Ca, Mg, Zn, Fe, Cu, Mo and so on. Ca was high in order of linden > canola > codonopsis > hedysarum honey, and K was higher than in Manuka honey in order of chestnut > hedysarum > codonopsis > jujube honey. Especially, these results suggest that Korean honey have a better nutrient content profile than Manuka honey.

Two new naturalized species from Korea, Euphorbia dentata Michx. and Securigera varia (L.) Lassen (한국 미기록 귀화식물: 톱니대극(Euphorbia dentata Michx.)과 왕관 갈퀴나물(Securigera varia (L.) Lassen))

  • Lee, You-Mi;Park, Su-Hyun;Jung, Su-Young;Yun, Seok-Min
    • Korean Journal of Plant Taxonomy
    • /
    • v.39 no.2
    • /
    • pp.114-119
    • /
    • 2009
  • Two naturalized species, Euphorbia dentata Michx. and Securigera varia (L.) Lassen were newly reported from Korea. Euphorbia dentata, "Top-Ni-Dae-Geuk", was found from Jungbu Highway, Daechang-ri, Daechang-myeon, Yeongcheon-si, Gyeongsangbuk-do. It is distinguished from E. pulcherrima by its life form, which is herbaceous, and its upper leaves, which are uniformly green. Securigera varia, "Wang-Gwan-Gal-Kwi-Na-Mul", was found from Hangang, Yeouido, Seoul. The genus Securigera is unrecorded in Korea and distinguished from genus Hedysarum by rose-colored flowers, a peduncle 5-10 cm and by having dense umbels at the tips of the peduncles.

Studies on the Desertification Combating and Sand Industry Development(III) - Revegetation and Soil Conservation Technology in Desertification-affected Sandy Land - (사막화방지(沙漠化防止) 및 방사기술개발(防沙技術開發)에 관한 연구(硏究)(III) - 중국(中國)의 황막사지(荒漠沙地) 녹화기술분석(綠化技術分析) -)

  • Woo, Bo-Myeong;Lee, Kyung-Joon;Choi, Hyung-Tae;Lee, Sang-Ho;Park, Joo-Won;Wang, Lixian;Zhang, Kebin;Sun, Baoping
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.1
    • /
    • pp.90-104
    • /
    • 2001
  • This study is aimed to analyze and to evaluate the revegetation and soil conservation technology in desertification-affected sandy land, resulting from the project of "Studies on the desertification combating and sand industry development". Main native plants for combating desertification : The general characteristics of vegetation distribution in desertified regions are partially concentrated vegetation distribution types including the a) desert plants in low zone of desert or sanddune of depressed basin, b) salt-resistant plants around saline lakes, c) grouped vegetation with Poplar and Chinese Tamarix of freshwater-lakes, saline-lakes and river-banks, d) gobi vegetation of gravel desert and e) grassland and oasis-woods around the alluvial fan of rivers, etc. Generally, Tamarix ehinensis Lour., Haloxylon ammodendron Bunge., Calligonum spp., Populus euphratica Oliver., Elaeagnus angustifolia L., Ulmus pumila L., Salix spp., Hedysarum spp., Caragana spp., Xanthoceras sorbifolia Bunge., Nitraria tangutorum Bobr., Lespedeza bicolor, Alhagi sparsifolia Shap., Capparis spinosa L., Artemisia arenaria DC., etc. are widely distributed in desertified regions. It is necessary for conducting research in the native plants in desertified regions. Analysis of intensive revegetation technology system for combating desertification : In the wind erosion region, the experimental research projects of rational farming systems (regional planning, shelterbelts system, protection system of oasis, establishment of irrigation-channel networks and management technology of enormous farmlands, etc.), rational utilization technology of plant resources (fuelwood, medicinal plants, grazing and grassland management, etc.), utilization technology of water resources (management and planning of watershed, construction of channel and technology of water saving and irrigation, etc.), establishment of sheltetbelts, control of population increase and increased production technology of agricultural forest, fuelwood and feed, etc. are preponderantly being promoted. And in water erosion region, the experimental research projects of development of rational utilization technology of land and vegetation, engineering technology and protection technology of crops, etc. are being promoted in priority. And also, the experimental researches on the methods of utilization of water (irrigation, drainage, washing and rice cultivation, etc.), agricultural methods (reclamation of land, agronomy, fertilization, seeding, crop rotation, mixed-cultivation and soil dressing works, etc.) and biological methods (cultivation of salt-resistant crops and green manure and tree plantation, etc.) for improvement of saline soil and alkaline soil in desertified-lands are actively being promoted. And the international cooperations on the revegetation technology development projects of desertified-lands are sincerely being required.

  • PDF

Studies on the Desertification and Sand Industry Development(II) - Analysis of Silvicultural Techniques and Effects of Landscape-Eco Shelterbelt Establishment - (사막화방지(沙漠化防止) 및 방사기술개발(防沙技術開發)에 관한 연구(硏究)(II) - 중국(中國)의 경관(景觀)-생태(生態) 방호림조성기술(防護林造成技術) 및 효과분석(效果分析) -)

  • Woo, Bo-Myeong;Lee, Kyung-Joon;Jeon, Gi-Seong;Kim, Kyung-Hoon;Choi, Hyung-Tae;Lee, Seung-Hyun;Lee, Byung-Kwon;Kim, So-Yeon;Lee, Sang-Ho;Jeon, Jeong-Ill
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.3
    • /
    • pp.81-99
    • /
    • 2000
  • The shelterbelts are very important to conserve and protect the sandy land, vegetation coverage, farmland, livestock and human life in the desertified land. The shelterbelts are constructed by the several row-plantings of high-adaptable species in the desertified land. The shelterbelts have various kind of type, and there are shelterbelts for conservation of farmland in dry the region, the protective shelterbelts (windbreaks for blowing-sand, artificial sanddune fixation by revegetation, and construction of farmland shelterbelts to protect farmland and pasture from wind erosion, etc.) in the semi-dry steppe, shelterbelts around the villages and oasis for sanddune fixation, shelterbelts for protection of railroads, and so on. The shelterbelts consist of main she1terbelts and minor shelterbelts. The main shelterbelts were constructed by being perpendicular to main wind direction, and the minor shelterbelts were constructed by being perpendicular to the main shelterbelts. Generally, the width of shelterbelts is 8~20m, and the number of row-planting is 4~10. The grid sizes of shelterbelts networks are $400{\times}400m$, $300{\times}500m$, $100{\times}200m$, and so on, and there are ventilation type and closing type in the type of shelterbelt. The width, number of row-planting, grid size and type of shelterbelt are selected by the local characteristics. The effects of shelterbelts are mainly the climate improvement and mitigation, such as prevention of occurrence of strong wind, cold wind and blowing-sand. And, the other effects of shelterbelts are effect of reforestation, increase of agricultural productions, establishment of greenbelts and green forests, construction of landscape-eco shelterbelts, improvement of life environment of local villages, supply of fuel wood and agricultural wood, land amelioration, effect of revegetation and restoration of desertified land, and so on. The kinds of the tree species mainly used for the construction of shelterbelts have differences between regions, but main species are Populus euphratica, Populus simonii, Populus bolleana, Populus tomentosa, Salix flavida, Salix mongolica, Tamarix chinensis, Hedysarum scoparium, and so on.

  • PDF