• Title/Summary/Keyword: Hec-6

Search Result 169, Processing Time 0.025 seconds

Development of Flood Analysis Module for the Implementation of a Web-Based Flood Management System (웹기반 홍수관리시스템 구현을 위한 홍수분석모듈개발)

  • Jung, In Kyun;Park, Jong Yoon;Kim, Seong Joon;Jang, Cheol Hee
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.103-111
    • /
    • 2014
  • This study was to develop the flood analysis module (FAM) for implementation of a web-based real-time agricultural flood management system. The FAM was developed to apply for an individual watershed, including agricultural reservoir. This module calculates the flood inflow hydrograph to the reservoir using effective rainfall by NRCS-CN method and unit hydrograph calculated by Clark, SCS, and Nakayasu synthetic unit hydrograph methods, and then perform the reservoir routing by modified Puls method. It was programmed to consider the automatic reservoir operation method (AutoROM) based on flood control water level of reservoir. For a $15.7km^2$ Gyeryong watershed including $472{\times}10^4m^3$ agricultural reservoir, rainfall loss, rainfall excess, peak inflow, total inflow, maximum discharge, and maximum water level for each duration time were compared between the FAM and HEC-HMS (applied SCS and Clark unit hydrograph methods). The FAM results showed entirely consistent for all components with simulated results by HEC-HMS. It means that the applied methods to the FAM were implemented properly.

An Investigation of the Hydrological Safety for Downstream Areas Consideration of Dam Discharge (댐 방류량을 고려한 하류지역의 수리안정성 검토)

  • Jun, Kye-Won
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.166-171
    • /
    • 2012
  • This study aims to analyze the hydrological characteristics of downstream areas by the dam discharge of Soyanggang dam by using HEC-RAS Model. As a result of analyzing the data of dam discharge divided into hydropeaking discharge and total discharge, it as found that the maximum hydro-peaking discharge and the maximum total discharge have been 254.4 CMS and 1567.7 CMS respectively for the past 11 years. When the hydro-peaking discharge was applied to HEC-RAS Model, there occurred some sections where the water level rapidly changed, but the velocity of moving water was quite stable in the range between 0.23 m/sec and 1.16m/sec. Besides, when the total discharge was applied to this model, the submersible bridge along the dam downstream was flooded, and in some sections, the water level increased over the flood plain. Accordingly, this study judged that it is required to necessarily consider all the influence made by an increase of Soyanggang Dam's discharge when waterfronts are installed or used at dam downstream areas.

Hydrologic Impact Assessment of land Cover Changes by 2002 Typhoon RUSA Using Landsat Images and Storm Runoff Model

  • Lee, Mi-Seon;Park, Geun-Ae;Kim, Seong-Joon
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.407-413
    • /
    • 2006
  • To investigate the streamflow impact of land cover changes by a typhoon, HEC-l storm runoff model was applied by using land cover information before and after the typhoon. The model was calibrated with three storm events of 1985 to 1988 based on 1985 land cover condition for a $192.7km^{2}$ watershed in northeast coast of South Korea. After the model was tested, it was run to estimate impacts of land cover change by the typhoon RUSA occurred in 2002 (31 August-1 September) with 897.5 mm rainfall. The land covers before and after the typhoon were prepared using Landsat 7 ETM+ of September 11 of 2000 and Landsat 5 TM of September 29 of 2002 respectively. For the $6.9km^{2}$ damaged area (3.6 % of the watershed), the peak runoff and total runoff by the changed land cover condition increased 12.5 % and 12.7 % for 50 years rainfall frequency and 1.4 % and 1.8 % for 500 years rainfall frequency respectively based on AMC (Antecedent Moisture Condition)-I condition.

An Evaluation of River Discharge Estimates in a Junction with Backwater effect using Interpolated Hydraulic Performance Graph (HPG로 산정한 합류부 배수영향 구간의 유량 평가)

  • Kim, Ji-Sung;Kim, Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.831-838
    • /
    • 2018
  • This paper presents a method to estimate the flow discharge in a backwater affected river junction. First, unsteady HEC-RAS model was simulated and calibrated using 2 recent real flood and then HPG (Hydraulic Performance Graph) was created by plotting the relationship between upstream and downstream stages and discharge in the reach and performing kriging interpolation. During a flood, the discharge through the reach can be estimated based on the stages at its ends and the developed HPG. These discharge data were in good agreement with the automatic discharge measurements such as ADVM. This study could provide an economical and practical method for estimating discharge in a junction with a high hysteresis of stage-discharge relationships.

ATM Cell Security Techniques Using OFB Mode on AES Block Cipher (AES 블록 암호에 OFB 모드를 적용한 ATM 셀 보안 기법)

  • Im, Sung-Yeal
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.6
    • /
    • pp.1237-1246
    • /
    • 2021
  • This paper is about Asynchronous Transfer Mode (ATM) cell security in which an Output Feedback (OFB) mode is applied to an AES block ciphers. ATM cells are divided into user data cells and maintenance cells, and each cell is 53 octets in size and consists of a header of 5 octets and a payload of 48 octets. In order to encrypt/decrypt ATM cells, the boundaries of cells must be detected, which is possible using the Header Error Control (HEC) field in the header. After detecting the boundary of the cell, the type of payload is detected using a payload type (PT) code to encrypt only the user cell. In this paper, a security method for ATM cells that satisfies the requirements of ISO 9160 is presented.

Hydraulic Analysis Using a Two-Dimensional Model(I) : Flow Analysis around Bridge Piers with Pier Shapes (2차원 모형을 이용한 수리해석(I) : 교각형상별 주변부 흐름해석)

  • Kim, Eung-seok;Lee, Seung-hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4936-4941
    • /
    • 2015
  • This study(I) has analyzed hydraulic characteristics with pier shapes by the bridge construction. The pier shapes are classified into total six types such as square, rhombus, octagon, oval, round, and no-piers. One-dimensional model(HEC-RAS) and two-dimensional model (RMA-2) were employed to analyze hydraulic characteristics around bridge piers. Square and rhombus shapes of piers showed velocity vectors in the upstream direction, which has a significant impact on the river bed changes by erosion and sediment transport around the piers. The flow characteristics of the oval type pier was most similar to that of no-pier situation almost without disrupting the river flow. This analysis can help to select pier types in the new bridge construction for the future.

Cytotoxic Effects of Partially Purified Substances from Bacillus polyfermenticus SCD Supernatant toward a Variety of Tumor Cell tines

  • Chang, Kyung-Hoon;Park, Jun-Seok;Choi, Jae-Hoon;Kim, Cheon-Jei;Paik, Hyun-Dong
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.163-166
    • /
    • 2007
  • The cytotoxic effects of partially purified substances from Bacillus polylfermenticus SCD toward a variety tumor cell lines were studied. Cytotoxic activity was determined with regard to the A549 (human lung carcinoma), AGS (human stomach adenocarcinoma), DLD-1 (human colon adenocarcinoma), HEC-1-B (human uterus adenocarcinoma), SW-156 (human kidney carcinoma), and NIH/3T3 (murine normal fibroblast) cell lines using the MTT assay. Cytotoxic substances were partially purified through Diaion HP-20 columns and extracted with methanol or other organic solvents (n-hexane, chloroform, ethylacetate, and butanol). B. polyfermenticus SCD supernatant showed up to 60% inhibition of cell viability fer all five human cancer cell lines tested. When treated with 10 mg/mL of n-hexane, chloroform, ethylacetate, and butanol extract, HEC-1-B cells showed a 25,62,35, and 63% rate of inhibition respectively, and AGS cells showed a 72, 61, 44, and 67% rate of inhibition, respectively. At a concentration of 10 mg/mL, 100% methanol Diaion HP-20 extracts showed inhibition rates of 97.0% toward A-549 cells, 98.1% toward AGS cells, 81.6% toward DLD-1 cells, 83.5% toward HEC-1-B cells, and 92.7% toward SW-156 cells. These results indicate that partially purified fractions from B. polyfermenticus SCD have the potential to inhibit not only colon cancer cells, but also lung, stomach uterus, and kidney cancer cells. Further studies are needed to characterize the cytotoxic substances released in B. polyfermenticus SCD cultures.

Analysis of Riverbed Change According to the Operation of Movable Gates Considering Flood and Low Flood Periods (홍수기 및 갈수기를 고려한 가동보 수문운영에 따른 하상변동 특성 분석)

  • Kim, Ha-Yong;Yu, In-Sang;Jeong, Sang-Man
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.134-134
    • /
    • 2012
  • 일반적으로 하천에 고정보를 설치하게 되면 생태 통로의 차단, 보 상류부 수질 악화, 하천 경관 훼손 등 다양한 문제점이 발생하며 특히 상류로부터 유입된 토사가 보 상류부에 퇴적되고 보 하류부는 침식이 발생하여 보 상 하류간의 심한 표고차로 인한 하천의 연속성이 파괴될 가능성이 있다. 이러한 고정보의 문제점을 해결하기 위하여 가동보를 설치하여 홍수소통을 원활하게 할 뿐 아니라 토사가 다량 함유되어 있는 홍수류를 보에 저류시키지 않고 하류로 유하시키고 가동보구간의 증가된 유속을 이용하여 보 상류측의 퇴적 토사를 씻겨 내려가게 하는 플러싱 효과를 이용하여 보 상류부의 토사 퇴적 문제점을 해결하고 있다. 하지만 가동보 설치에 따른 기존의 하상변동분석 연구와 실무에서는 이러한 상황을 고려하지 않고 수문을 닫았을 때와 수문을 열었을 때 2가지 경우에 대해서만 하상변동분석이 이루어지고 있는 실정이다. 홍수기 및 갈수기 시 보의 계획홍수위 및 상류관리수위를 무시한 하상변동분석은 과도한 플러싱 또는 저류효과가 발생함으로써 실질적인 하상의 변동 특성을 제대로 반영할 수 없다. 본 연구에서는 금강의 보 건설 구간 중 백제보의 계획홍수위 및 상류관리수위를 유지하는 수문 운영을 반영하여 백제보 상 하류에 하상변동특성을 분석하였으며 수문 운영을 고려하지 않았을 경우의 하상변동과 비교하였다. 분석에 사용된 수치모형은 HEC-6가 탑재된 HEC-RAS 4.1을 이용하였으며 본 모형이 유사의 횡단 분포를 고려하지 못하는 한계성(1차원모형)을 가지나 하상토 및 부유사의 전체 입도분포를 고려하고 User Defined Curves를 이용하여 수문작동 옵션 지정이 가능하여 선택하여 홍수기와 갈수기를 고려한 하상변동 특성 분석을 실시하였다.

  • PDF

Prediction of Climate Change Impacts on Streamflow of Daecheong Lake Area in South Korea

  • Kim, Yoonji;Yu, Jieun;Jeon, Seongwoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.169-169
    • /
    • 2020
  • According to the IPCC analysis, severe climate changes are projected to occur in Korea as the temperature is expected to rise by 3.2 ℃, the precipitation by 15.6% and the sea level by 27cm by 2050. It is predicted that the occurrence of abnormal climate phenomena - especially those such as increase of concentrated precipitation and extreme heat in the summer season and severe drought in the winter season - that have happened in Korea in the past 30 years (1981-2010) will continuously be intensified and accelerated. As a result, the impact on and vulnerability of the water management sector is expected to be exacerbated. This research aims to predict the climate change impacts on streamflow of Daecheong Lake area of Geum River in South Korea during the summer and winter seasons, which show extreme meteorological events, and ultimately develop an integrated policy model in response. We projected and compared the streamflow changes of Daecheong Lake area of Geum River in South Korea in the near future period (2020-2040) and the far future period (2041-2060) with the reference period (1991-2010) using the HEC-HMS model. The data from a global climate model HadGEM2-AO, which is the fully-coupled atmosphere-ocean version of the Hadley Centre Global Environment Model 2, and RCP scenarios (RCP4.5 and RCP8.5) were used as inputs for the HEC-HMS model to identify the river basins where cases of extreme flooding or drought are likely to occur in the near and far future. The projections were made for the summer season (July-September) and the winter season(November-January) in order to reflect the summer monsoon and the dry winter. The results are anticipated to be used by policy makers for preparation of adaptation plans to secure water resources in the nation.

  • PDF

Estimation of Future Long-Term Riverbed Fluctuations and Aggregate Extraction Volume Using Climate Change Scenarios: A Case Study of the Nonsan River Basin (기후변화시나리오를 이용한 미래 장기하상변동 및 골재 채취량 산정: 논산천을 사례로)

  • Dae Eop Lee;Min Seok Kim;Hyun Ju Oh
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.107-117
    • /
    • 2024
  • The objective of this study is to estimate riverbed fluctuations and the volume of aggregate extraction attributable to climate change. Rainfall-runoff modeling, utilizing the SWAT model based on climate change scenarios, as well as long-term riverbed fluctuation modeling, employing the HEC-RAS model, were conducted for the Nonsan River basin. The analysis of rainfall-runoff and sediment transport under the SSP5-8.5 scenario for the early part of the future indicates that differences in annual precipitation may exceed 600 mm, resulting in a corresponding variation in the basin's sediment discharge by more than 30,000 tons per year. Additionally, long-term riverbed fluctuation modeling of the lower reaches of the Nonsan Stream has identified a potential aggregate extraction area. It is estimated that aggregate extraction could be feasible within a 2.455 km stretch upstream, approximately 4.6 to 6.9 km from the confluence with the Geum River. These findings suggest that the risk of climate crises, such as extreme rainfall or droughts, could increase due to abnormal weather conditions, and the increase in variability could affect long-term aggregate extraction. Therefore, it is considered important to take into account the impact of climate change in future long-term aggregate extraction planning and policy formulation.