• Title/Summary/Keyword: Heavyweight impact noise

Search Result 10, Processing Time 0.024 seconds

Establishing Evaluation Modifiers for the Annoyance Responses to Heavyweight Impact Noise (Annoyance 반응에 의한 중량충격음 평가척도 구성)

  • Kim, Kyoung-Ho;Jeong, Jeong-Ho;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.917-917
    • /
    • 2003
  • The auditory experiments based on the subjective annoyance responses were undertaken for the establishment of the adverb modifiers of the heavy-weight impact noises. The standard heavy weight impact noise, impact ball noise and adult walking noise were recorded by dummy head at a newly-built apartment and were presented to the subjects by headphones. The levels of the three impact noises were varied from 30 to 60㏈(A) and the subjects matched one of the adverb modifiers to each level of the noise sources. As a result, seven scale modifiers were established and the intervals between the modifiers were found as equal. In addition, it was found that the lower annoyance noise limits for the heavyweight impact, impact ball and walking were 40-45㏈ (L$\sub$I, Fmax. AW), which is 6㏈ lower than in the previous study. The background noise level was as low as 21㏈(A) in the test booth, therefore, the testing conditions need to be concerned for evaluation of floor impact noise.

  • PDF

An Experimental Study on the Vibration Response Characteristics of Floating Floor Systems for Heavyweight Impact Noise Reduction. (바닥충격음 차단을 위한 뜬바닥 구조의 진동응답특성에 관한 실험적 연구)

  • Choi, Kyung-Suk;Seok, Won-Kyun;Mauk, Ji-Wook;Shin, Yi-Seop;Kim, Hyung-Joon;Kim, Jeong-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.227-228
    • /
    • 2023
  • A floating floor generally consists of mortar bed separated from the structural RC slab by a continuous resilient layer. It is known that the floating floors are a type of vibration-isolation system to improve the impact sound insulation performance. However, some researchers have demonstrated that the amplification of vibration response at a specific range of frequencies results in an increase in the impact sound level. This study carried out the forced vibration tests to obtain the frequency response function (FRF) of a floating floor compared with a bare RC slab. Test results shows that the additional peak occur in vibrational spectrum of the floating floor except natural vibration modes of the bare RC slab. This is because the relatively flexible resilient material and mass of the mortar bed offer an additional degree of freedom in the structural system. Therefore, it could be efficient for reduction of floor impact vibration and noise to control the additional mode frequency and response of floating floors.

  • PDF

A study on development of dry ondol access floor system for sustainable apartment (지속가능형 공동주택 구현을 위한 건식온돌 이중바닥 시스템 개발)

  • Oh, Jin-Kyun;Sohn, Jang-Ryul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.689-689
    • /
    • 2010
  • Since the apartment was built by Korea National Housing Cooperation in 1961, the amount of its supply has been increased greatly, especially from the late 70's. Recently there are many ongoing studies regarding sustainable construction apartment in Korea, one of the research is developing sustainable apartment that has longer life cycle. Also according as life's quality of residents is upgrading, complain for impact noise and plumbing system noise from upstair or downstair are increasing more and more. To solve this complains, government established impact noise standard as lightweight impact noise of 58dB, heavyweight impact noise of 50dB and presented standard floor system or recognition floor system to satisfy this impact noise standard. So in this study, the aim is to develop dry ondol access floor system for sustainable apartment which have pleasant and quiet life environment.

  • PDF

Evaluation of heavy-weight impact sounds generated by impact ball through classification (주파수 특성 분류를 통한 임팩트 볼 중량충격음의 주관적 평가)

  • Kim, Jae-Ho;Lee, Pyoung-Jik;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1142-1146
    • /
    • 2007
  • In this studies, subjective evaluation of heavy-weight floor impact sound through classification was conducted. Heavyweight impact sounds generated by an impact ball were recorded through dummy heads in apartment buildings. The recordings were classified according to the frequency characteristics of the floor impact sounds which are influenced by the floor structure with different boundary conditions and composite materials. The characteristics of the floor impact noise were investigated by paired comparison tests and semantic differential tests. Sound sources for auditory experiment were selected based on the actual noise levels with perceptual level differences. The results showed that roughness and fluctuation strength as well as loudness of the heavy-weight impact noise had a major effect on annoyance.

  • PDF

Floor impact sound classification and setting Acceptable limit based on psychoacoustical evaluation (감성평가 기반 바닥충격음 등급화 및 수인한도 설정)

  • Kim, Sung Min;Hong, Joo Young;Jeon, Jin Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.7-9
    • /
    • 2014
  • An auditory experiment was conducted to establish annoyance criteria for floor impact noise in apartment buildings. Heavyweight floor impact sounds were recorded using an impact ball; the impact sound pressure level (SPL) together with the temporal decay rate (DR), which is quantified by the dB drop per second, was analyzed. For the experiment, A-weighted exposure levels of the heavy-weight floor impact sounds ranging 34~73 dB were evaluated at 3 dB intervals. Participants used a 7-point verbal scale to evaluate the level of annoyance from floor impact noise. The results show that the annoyance increases with increasing impact SPL and decreasing DR. Consequently, a classification and an acceptable level of floor impact sounds were proposed.

  • PDF

An Experimental Study or the Prediction Method of Floor Impact Sound Insulation Performance in Apartment House Using Impedance Method(II) (임피던스법을 이용한 공동주택 바닥 충격음 차음성능 예측방법에 관한 실험 적 연구(II) - 경량 표준충격원을 중심으로 -)

  • 김재수;장길수;김선우
    • Journal of KSNVE
    • /
    • v.2 no.1
    • /
    • pp.21-31
    • /
    • 1992
  • In the previous paper, we report a practical floor impact sound level prediction method for a heavyweight impact source(Tire), soft impact source such as children jumping and running. According to these results, the calculated value and the measured value correspond comparatively well, regardless of differences in the floor structures. And the floor impact sound for a heavyweight impact source, soft source was strongly influenced by structural factors such as floor slab stiffness and peripheral support conditions. But the floor impact sound for a light impact source (Tapping machine), hard impact source was influenced by resilient layers, composed of multi-layer in floor structures. Thus, In this paper, 4 actual floor structures, all with differing resilient layers, were calculated using impedance method. When these calculation values were compared with the measured values, approximately all the values fell with one rank of the sound insulation grade, reference curve(L curve) by the JIS standard. So, a sample of measured values and calculated values from floor structures is presented to show the accuracy and appropriateness of the impedance method in domestic.

  • PDF

Use of Damping Materials for Reducing Heavyweight Floor Impact Noise in Apartment Buildings (공동주택의 중량충격음 저감을 위한 제진재의 활용)

  • Jeong, Young;Yoo, Seung-Yup;Kim, Min-Bae;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.96-99
    • /
    • 2005
  • Noise and vibration generated by heavy-weight floor impact in apartment buildings were studied. The resonance frequency increased in the floor structures where damping materials were used in the living room and the bedroom. Both the acceleration wavelength and the acceleration level decreased. The results showed that the resonance frequency increased and vibration acceleration level decreased when the damping materials were used. Heavy-weight impact sound levels of the structure decreased substantially below 80Hz.

  • PDF

Verification of Effectiveness of the Standard Floor Impact Source by Comparing with Living Impact Sources (실생활 충격소음을 통한 표준 바닥충격원의 실효성 검증)

  • Park, Hyeon Ku;Kim, Kyeong Mo;Kim, Sun-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.12
    • /
    • pp.1117-1126
    • /
    • 2013
  • The standard impact sources, standardized to rate the sound insulation performance of floor structure, should simulate well the real floor impact sources, which is very important to grade the floor structure then to establish counter plan to improve the performance of floor. Recently the tire, the standard heavyweight impact source, has been discussed that the impact force is too big to represent the real impact force. And researches have been carried on the applicability as a substitute or a supplementary. In addition, tapping machine, the standard lightweight impact source, is also questionable if it is representative of real lightweight impact source. This study aims to examine the similarity of standard impact sources with living impact sources, comparing the physical characteristics such as impact force, frequency contents and sound level. The result showed that the physical characteristics of standard impact sounds were somewhat different with that of living impact sounds, and the standard sources couldn't be verified from this result. Later subjective evaluation should be followed to compare how the physical differences make relationship with the subjective differences.

Case study on frequency bands contributing the single number quantity for heavy-weight impact sound based on assessment method changes (중량충격음 평가방법 변화에 따른 단일수치평가량 기여 주파수 대역 사례 분석)

  • Hye-kyung Shin;Sang Hee Park;Kyoung-woo Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.565-571
    • /
    • 2023
  • With the introduction of the post-verification system, the measurement of floor impact noise performance on-site has become mandatory, and the evaluation method has changed. To track the performance changes since the policy implementation, research is needed on how the characteristics of heavyweight impact sound change according to the varied evaluation method. In this study, we analyzed the contribution rate of the frequency band-specific sound pressure level on the single-number quantity for a multi-family housing unit with the same floor plan and floor structure, comprising 59 households, based on the changed impact sources and evaluation indicators. It is difficult to compare simply because the method of calculating contributions by frequency band according to the single-day evaluation is different, but the average contribution rate of 63 Hz was 80.8 % in the evaluation method before the introduction of the post-confirmation system (Tire measurement and evaluated as L'i,Fmax,AW), and the average contribution rate of 125 Hz was 19.2 %. The current evaluation method (rubber ball measurement and evaluation as L'iA,Fmax) shows that the contribution rate has decreased to 33.1 % on average at 50 Hz ~ 80 Hz, 58.7 % on average at 100 Hz ~ 160 Hz, 6.9 % on average at 200 Hz ~ 315 Hz, and 1.3 % on average at 400 Hz ~ 630 Hz. This result is a case analysis for the target apartment house, and it is necessary to analyze measurement data for more diverse apartment houses.

A Case Study on the Vibration Propagation Characteristics by Underwater Rock Cutting Work (수중 쇄암작업에 따른 진동 전파 특성에 관한 시공 사례)

  • Lim, Dae-Kyu;Shin, Young-Cheol;Kim, Young-Min;Lee, Chung-Eon
    • Explosives and Blasting
    • /
    • v.33 no.2
    • /
    • pp.25-39
    • /
    • 2015
  • The common underwater rock removal methods involve underwater blasting and crane's chisel dropping impact method. From an environmental point of view, these methods cause ground vibrations and underwater noise. At the site for this study, a method of dropping heavyweight chisel is selected to remove the underwater bedrock near the ferry rack in the course of improving the cargo handling ability of the loading dock. A prediction formula for the vibration was obtained based on the measurement and evaluation of the vibrations caused by the chisel dropping impacts during the test droppings. The prediction formula was successfully applied to the main construction for securing the stability of the structure.