• 제목/요약/키워드: Heavy-metals

Search Result 3,380, Processing Time 0.032 seconds

Biosorption and Desorption of Heavy Metals using Undaria sp. (미역 폐기물의 중금속 흡탈착 특성)

  • Cho, Ju-Sik;Park, Il-Nam;Heo, Jong-Soo;Lee, Young-Seak
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.2
    • /
    • pp.92-98
    • /
    • 2004
  • The adsorption and desorption of Pb, Cd, Co, Zn, Cr, Co, Ni, and Mo on the waste Undaria sp. were studied. Except for Pb. the mono adsorption rate for all heavy metals were lower than that of the heavy metals mixed. However, the adsorption capacity of the heavy metals by 1g of biosorption, in mixed heavy metals increased According to FT-IR analysis of the biosorbent after heavy metal biosorption, the replacement of the functional group by the heavy metals ions could be confirmed and the inverted peaks became larger after heavy metals adsorption. The adsorption equilibrium of heavy metals was reached in about 1 hour. The equilibrium parameters were determined based on Langmuir and Freundlich isotherms. The affinity of metals on the biosorbent decreased in the following order: Pb>Cu>Cr>Cd>Co. The desorption rate decreased in the following sequence: NTA>$H_2SO_4$>HCl>EDTA. The desorption rate of heavy metals by NTA increased with increase in the concentration from 0.1 to 0.3% but the desorption rate became constant beyond 0.3%. Therefore, it represented that desorption rate of heavy metals was suitable under optimized condition ($30^{\circ}C$, pH 2 and 0.3% NTA solution) and was fast with 80% or more the uptake occurring within 10 min of contact time.

Toxic Effects of Binary Mixtures of Heavy Metals on the Growth and P Removal Efficiencies of Alcaligenes sp. (Alcaligenes sp.의 생장과 인 제거에 미치는 이종 중금속 혼합의 독성 효과)

  • Kim, Deok Hyun;Yoo, Jin;Chung, Keun Yook
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.1
    • /
    • pp.79-86
    • /
    • 2016
  • BACKGROUND: This study was initiated to quantitatively evaluate the effects of five heavy metals on the growth and P removal efficiencies of Alcaligenes sp., known as the Phosphorus Accumulating Organisms (PAOs). It was cultivated in the batch system with five heavy metals, such as Cd, Cu, Zn, Pb and Ni, added in single and binary mixtures, respectively.METHODS AND RESULTS: IC50 (half of inhibition concentration of bacterial growth) and EC50 (half of effective concentration of phosphorus removal Efficiencies) were used to quantitatively evaluate the effects of heavy metals on the growth and phosphorus removal Efficiencies of Alcaligenes sp. In addition, Additive Index Value (A.I.V.) method was used to evaluate the interactive effects between Alcaligenes sp. and heavy metals. As a result, as the five heavy metals were singly added to Alcaligenes sp., the greatest inhibitory effects on the growth and P removal efficiencies of each bacteria was observed in the cadmium (Cd). In the binary mixture treatments of heavy metals, the treatments of lowest IC50 and EC50 were the Cd + Cu treatment. Based on the IC50 and EC50 of the binary mixtures of heavy metals treatments, most interactive effects between the heavy metals were found to be antagonistic.CONCLUSION: Based on the results obtained from this study, it appears that they could provide the basic information about the toxic effects of the respective treatments of single and binary mixtures of heavy metals on the growth and P removal efficiencies of Alcaligenes sp. through further study about the characterization of functional proteins involved in toxic effects of heavy metals.

Heavy Metal Concentrations of Sediment and Ruditapes philippinarum Inhabited in the Intertidal Zone of Kwangyang Bay (광양만 조간대의 퇴적토 및 바지락(Ruditapes philippinarum)내 중금속 분포)

  • Gwak, Yeong-Se;Hwangbo, Jun-Gwon;Lee, Chung-Il
    • The Korean Journal of Ecology
    • /
    • v.24 no.5
    • /
    • pp.297-301
    • /
    • 2001
  • The objectives of this study were to evaluate the extent of heavy metals(As, Pb, Cd, Hg)accumulated in sediments of the Kwangyang Bay, and to investigate bioaccumulation of heavy metals(As, Pb, Cd, Hg) in shellfish(Ruditapes philippinarum) commonly found in the intertidal zone of the Kwangyang Bay. The data was also compared with that of Namhae and Kohung intertidal zones, which were regarded as control stations in this study. Substantial geographical variations in heavy metal concentrations in the sediment samples were found. However, heavy metal concentrations in the sediment collected from the intertidal zones of Yochon(stations I, J) and Myodo(stations G, H) close to Yochon Industrial Area exhibited relatively higher heavy metal concentrations, compared to those from other intertidal zones(stations A, B, C) adjacent to POSCO at Kwangyang Bay. In addition, stations A, B, C showed lower heavy metal concentrations in the sediments than controls(K, L). The annual mean concentrations of the heavy metals in the shellfish from the stations(G, H, I, J) were significantly higher than those from other stations(A, B, C, D, E, F). Nevertheless, heavy metal accumulation in sediments was not reflected in bioaccumulation of heavy metals in shellfish, probably indicating that interactions between the heavy metals in sediment and shellfish might be poor in the current study area, Kwangyang Bay.

  • PDF

Examining the Interrelation of Total, Soluble, and Bioavailable Metals in the Sediments of Urban Artificial Lakes (도심인공호 퇴적물의 총중금속, 용존중금속, 생물이용성 중금속의 연관성 규명)

  • Baek, Yong-Wook;An, Youn-Joo
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.1
    • /
    • pp.66-72
    • /
    • 2008
  • Total metals, soluble metals, and bioavailable metals were monitored at the sediments of urban lakes located in Seoul, Korea during spring season 2006. The metals measured were zinc, arsenic, chromium, copper, nickel, and cadmium, which are known to be toxic to human health and ecosystems. The main sources of heavy metals in the lakes were urban runoff and atmospheric deposition associated with air pollution in urban areas. Extraction by using a weak electrolyte solution (0.1 M $Ca(NO_3)_2$) was used to predict bioavailability of the metals. Among the six heavy metals studied, copper was the most bioavailable, based the weak electrolyte extraction techniques. Since metal toxicity is related to metal bioavailability, the results were consistent with the high ecotoxicity of copper, compared to other heavy metals. Overall results suggest that there was no direct relationship between total and bioavailable metal concentration, although zinc, copper and cadmium show some relationships.

Evaluation of Characteristics of Particle Composition and Pollution of Heavy Metals for Tidal Flat Sediments in Julpo Bay, Korea (줄포만 갯벌의 입도특성 및 중금속 오염도 평가)

  • Kim, Jong-Gu;You, Sun-Jae;Ahn, Wook-Sung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.4
    • /
    • pp.247-256
    • /
    • 2008
  • For the systematic scientific management of tidal flat sediment in Julpo bay of Korea, this study conducted a survey of particle composition, organic matter(l.L) and heavy metals for three lines ; including F, R and L lines in tidal flat sediment. Particle composition of tidal flat sediments consisted predominantly of clay at F line which was in right angle direction to the coast, whereas R and L lines were located horizontally along the coast and consisted predominantly of silt. Mean grain size values of tidal flat sediments were in the range of 3.7 ${\phi}{\sim}$10.4 ${\phi}$(average 7${\phi}$). The contents of heavy metals observed at R and L lines were lower than those at F line. The correlation analysis among heavy metals, organic matter and particle size was found to have a good interrelationship. For the evaluation of heavy metals pollution, two criteria of US NOAA and KEI(in Korea) were applied Heavy metals pollution level of tidal flat sediments belonged in Non polluted and Moderately polluted groups in US EPA criteria, and its pollution levels sat below ERL in NOAA criteria. The results of heavy metals pollution level obtained by KEI criteria were found to be less than the goal level.

  • PDF

Comparison of Marine Luminescence Bacteria and Genetically Modified Luminescence E. coli, for Acute Toxicity of Heavy Metals (재조합 발광대장균과 해양 발광 미생물을 이용한 중금속 급성독성평가)

  • Lee, Sang-Min;Bae, Hee-Kyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.900-906
    • /
    • 2005
  • The responses of two luminescence-based biosensors were studied on various heavy metals in aqueous solutions. One was recombinant E. coli ($DH5{\alpha}$/pSB311), genetically modified luminescence-based bacteria, and the other was Vibrio fisheri used for the LumisTox system. The recombinant E. coli was marked with the lux CDABE gene from multicopy plasmid, pACYC184, originally isolated from Photorhabdus luminescens. The $DH5{\alpha}$/pSB311 had a characteristic of no organic substrate for its luminescence reaction. Among the tested heavy metals Zinc and cadmium were less toxic than copper and mercury. The recombinant E. coli was more sensitive to toxicity of heavy metals than the LumisTox. The order of toxicity of the heavy metals to the recombinant E. coli was $Hg^{2+}>Cu^{2+}>Zn^{2+}>Cd^{2+}$. In case of the LumisTox, the order of the toxicity of heavy metals was $Hg^{2+}>Cu^{2+}>Cd^{2+}>Zn^{2+}$. The genetically modified luminescence-based biosensor offers a range of sensitive, rapid, and easy to use methods for assessing the potential toxicity of heavy metals in aqueous samples.

Contents and Migration of Heavy Metals and Phthalates in Children's Products and Phthalates in Children's Products (어린이용품 환경유해인자인 중금속과 프탈레이트의 함유량 및 전이량 조사)

  • Choi, In Seak;Choi, Sung Churl
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.2
    • /
    • pp.127-138
    • /
    • 2014
  • As increasing concerns about potential risks and hazards in children's products, the laws and regulations for heavy metals and phthalate retardants contained in the children's products have been reinforced in many countries. Especially, in Korea, environment and health laws and regulations for children's products was declared in 2009. This study was researched in terms of contents and migration of phthalates and heavy metals in 124 children's products sold in the Korean market. The results for contents of heavy metals showed that 123 products contained different 14 heavy metals depending on kinds of products. As the results of migration by sucking, the heavy metals in the products such as black, plastic dolls, wood toys, and bottom mat for swimming were transferred into extraction solution. Ba, Cu, Zn, and Sn were transferred from most of these products into the extraction solution and Co, Ni and Pb were additionally transferred into several products. As the results of migration through a skin, while Ba, Cu, and Zn were transferred from most products containing the heavy metals, as for accessories, Cr, Ba, Ni, Zn, and Cu were migrated. The results of contents of phthalates presented that 21 products contained DBP, DEHP and DINP. Only 2 products showed the migration of DEHP by sucking. DEHP in most products were transferred and DBP for 2 products and DINP for 7 products were migrated.

Distribution Characteristics of Organic Matters and Heavy Metals in Surface Sediments of Samcheok Port (삼척항 표층퇴적물 내 유기물 및 중금속 분포 특성)

  • Shin, Woo-Seok;Kim, Young-Kee
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.481-486
    • /
    • 2020
  • To evaluate geochemical characteristics of surface sediments in Samcheok Port, the distribution characteristics of particle sizes, organic matters and heavy metals were investigated. The sediments showed a mixed property of sand, silt, and clay, however fine-grains dominated at the inner port and coarse-grains dominated at the outer port. The organic (COD, TOC, and IL) contamination of the sediment at the inner port were higher than that of the outer port, and the concentrations of total nitrogen and total phosphorus at the inner port was higher than those of the outer port. Also, heavy metals contamination of surface sediments at the inner port was higher than those of the outer port (except for As). From the results of high organic matter concentrations and C/N ratio at the inner port, it is considered that the contamination of organic matters was mainly derived from the land. The correlation analysis among the particle size, chemical composition, and heavy metals resulted in high correlation between silt-clay and heavy metals, and between organic matters and heavy metals. The sequential extraction results of heavy metals showed the sum of exchangeable, carbonate, and oxide fractions of Ni, Zn, Cu, Pb, Cd, and As were 14.8, 49.8, 39.1, 32.2, 51.8 and 26.6%, respectively.

Sequential Fractionation of Heavy metals from Mine Tailings and Two Series of Agricultural Soils (광미장과 두개의 농업토양통 토양으로 부터의 중금속의 연속 분획)

  • Chung, Doug-Young;Lee, Do-Kyoung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.375-382
    • /
    • 1999
  • In order to investigate the contamination characteristics of the heavy metals in the mine tailings of abandoned gold mine and its surrounding agricultural soils, a sequential extraction procedure of increasing reactivity in the dissolution processes of the heavy metals(Cd, Cu, and Pb) which were associated with solid and/or solution phase in soils was attempted to partition into six particulate fractions : exchangeable, bound to carbonate, bound to Fe-Mn oxides, bound to organic matter, residual, and soluble. Among indigenous heavy metals in the mine tailings, Pb was the most abundant and Cu and Cd were followed by. Fractionation result of Pb obtained from the triplicate samples of the mine tailings were in the order of Fe-Mn oxide> Carbonate> Residual> Organic> Exchangeable> Soluble, while Wolgok series were Exchangeable > Fe-Mn oxide > Carbonate> Organic> Residual> Soluable. However the other heavy metals studied were not followed this trend. The fractionation results of mine tailing and agricultural soils demonstrated that different geochemical fractions were operationally defined by an extraction sequence that generally followed the order of decreasing solubility. Therefore potential mobility and bioavailability of heavy metals as toxic pollution sources can be evaluated when studying the pollution levels of heavy metals in soils.

  • PDF

Adsorption Mechanisms of Heavy Metals on Microplastics in Aquatic Environments: A Review (수환경에서 미세플라스틱의 중금속 흡착특성과 메커니즘에 관한 고찰)

  • Taejung Ha;Junyong Heo;Subeen Kim;Jong Sung Kim;Minjune Yang
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.701-716
    • /
    • 2023
  • Microplastics (<5 mm diameter) in aquatic environments adsorb heavy metals, potentially exposing humans to their toxic effects via food chains. We investigated factors influencing the adsorption of heavy metals on microplastics in aquatic environments, examining their adsorption processes and mechanisms. Adsorption characteristics vary with polymer type, crystallinity, particle size, and environmental conditions (pH, temperature, weathering), and the adsorption capacity for heavy metals increases with weathering and reduction in polymer particle size. However, correlations between environment temperature, polymer crystallinity, and adsorption capacity for heavy metals could not be confirmed. The adsorption behavior of heavy metals can be explained in terms of physicochemical adsorption processes and evaluated through adsorption kinetics and isothermal studies, with multiple mechanisms usually being involved. An understanding of the adsorption of heavy metals by microplastics should aid evaluation of the potential risks of microplastics in aquatic environments.