• Title/Summary/Keyword: Heavy-ion beam

Search Result 70, Processing Time 0.031 seconds

Development of Microvolume LET Counter for Therapeutic Heavy Ion Beam

  • Hirai, Masaaki;Kanai, Tatsuaki
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.231-232
    • /
    • 2002
  • We have been developing microvolume LET counter in order to measure the three-dimensional LET distribution of the therapeutic heavy ion radiation volumes in the water phantom. With help of the technique of cathode induced carhge readout, this detector has a rectangular (box-shape) sensitive volume of which size is about 1 mm$^2$ and 2mm (depth).

  • PDF

Emittance Measurements of the Ion Sources for Induction Linac Driven Heavy Ion Fusion

  • Lee, Heon-Ju
    • Nuclear Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.181-185
    • /
    • 1997
  • The ion sources for induction linac driven heavy ion fusion were fabricated and their omittance characteristics were investigated. For to kinds of ion sources, i. e. a carbon vacuum arc ion source and a cusp field rf ion source, the emittance was measured with a double slit beam scanner. The required normalized omittance of an ion source for heavy ion fusion is 10$^{-7}$ - 5$\times$10$^{-7}$ $\pi$ m-rod, and the measured emittances of the ion beams from carbon vacuum arc ion source and cusp field rf ion source (Ne$^{+}$) were 2$\times$10$^{-6}$ $\pi$ m-rad and 4$\times$10$^{-7}$ $\pi$ m-rad, respectively.y.

  • PDF

Beam position measurement system at HIRFL-CSRm

  • Min Li ;Guoqing Xiao ;Ruishi Mao ;Tiecheng Zhao ;Youjin Yuan ;Weilong Li ;Kai Zhou;Xincai Kang;Peng Li ;Juan Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1332-1341
    • /
    • 2023
  • Beam position measurement system can not only provide the beam position monitoring, but also be used for global orbit correction to reduce beam loss risk and maximize acceptance. The Beam Position Monitors (BPM) are installed along the synchrotron to acquire beam position with the front-end electronics and data acquisition system (DAQ). To realize high precision orbit measurement in the main heavy ion synchrotron and cooling storage ring of heavy-ion research facility in Lanzhou (HIRFL-CSRm), a series of alignment and calibration work has been implemented on the BPM and its DAQ system. This paper analyzed the tests performed in the laboratory as well as with beam based on the developed algorithms and hardware. Several filtering algorithms were designed and implemented on the acquired BPM raw data, then the beam position and resolution were calculated and analyzed. The results show that the position precision was significantly improved from more than 100 ㎛ to about 50 ㎛ by implementing the new designed filtering algorithm. According to the analyzation of the measurement results and upcoming physical requirements, further upgrade scheme for the BPM DAQ system of CSRm based on field programmable gate array (FPGA) technology was proposed and discussed.

'AMADEUS' Software for ion Beam Nano Patterning and Characteristics of Nano Fabrication ('아마데우스' 이온빔 나노 패터닝 소프트웨어와 나노 가공 특성)

  • Kim H.B.;Hobler G.;Lugstein A.;Bertagonolli E.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.322-325
    • /
    • 2005
  • The shrinking critical dimensions of modern technology place a heavy requirement on optimizing feature shapes at the micro- and nano scale. In addition, the use of ion beams in the nano-scale world is greatly increased by technology development. Especially, Focused ion Beam (FIB) has a great potential to fabricate the device in nano-scale. Nevertheless, FIB has several limitations, surface swelling in low ion dose regime, precipitation of incident ions, and the re-deposition effect due to the sputtered atoms. In recent years, many approaches and research results show that the re-deposition effect is the most outstanding effect to overcome or reduce in fabrication of micro and nano devices. A 2D string based simulation software AMADEUS-2D $(\underline{A}dvanced\;\underline{M}odeling\;and\;\underline{D}esign\;\underline{E}nvironment\;for\;\underline{S}putter\;Processes)$ for ion milling and FIB direct fabrication has been developed. It is capable of simulating ion beam sputtering and re-deposition. In this paper, the 2D FIB simulation is demonstrated and the characteristics of ion beam induced direct fabrication is analyzed according to various parameters. Several examples, single pixel, multi scan box region, and re-deposited sidewall formation, are given.

  • PDF

Recent Vacuum Technology for Superconducting Heavy-ion Accelerator (초전도 중이온가속기 진공시스템의 최신 기술동향)

  • Kim, Jaehong;Son, Hyungjoo;Cho, Youngbum
    • Vacuum Magazine
    • /
    • v.4 no.1
    • /
    • pp.4-11
    • /
    • 2017
  • The Rare Isotope Science Project (RISP) has been launched for developing a superconducting heavy-ion linear accelerator, which produces various rare isotopes for low energy nuclear science and applied sciences. This superconducting linac is designed to achieve a very high beam current (200Mev/u with 400 kW beam power) of heavy ions including Uranium. For the high current accelerator, the requirement of ultra high-vacuum level is considered as one of the of important factors. Vacuum calculations have been carried out to verify the vacuum system design satisfied the requirements. In this paper, an overview of RISP and vacuum calculation methods for several interesting sections of the superconducting linear accelerator.

Dose Distribution of $^{11}C$ Beams for Spot Scanning Radiotherapy

  • Urakabe, Eriko;Kanai, Tatsuaki;Kanazawa, Mitsutaka;Kitagawa, Atsushi;Noda, Koji;Tomitani, Takehiro;Suda, Mitsuru;Mizuno, Hideyuki;Iseki, Yasushi
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.202-205
    • /
    • 2002
  • This paper describes the spot scanning with $^{11}$ C beams for the Heavy Ion Medical Accelerator in Chiba (HIMAC). The concave-shaped irradiation field was optimized and the dose distribution was measured by 128-ch ionization chamber. Because of the wide momentum spread inherent in $^{11}$ C beams, the dispersion caused from the beam line and the scanning magnets should be taken into account to calculate the dose distribution of $^{11}$ C beams and their irradiated field. The reconstructed dose distribution is in good agreement with the experimental results.

  • PDF

Tailoring the properties of spray deposited V2O5 thin films using swift heavy ion beam irradiation

  • Rathika, R.;Kovendhan, M.;Joseph, D. Paul;Pachaiappan, Rekha;Kumar, A. Sendil;Vijayarangamuthu, K.;Venkateswaran, C.;Asokan, K.;Jeyakumar, S. Johnson
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2585-2593
    • /
    • 2020
  • Swift heavy ion (SHI) beam irradiation can generate desirable defects in materials by transferring sufficient energy to the lattice that favours huge possibilities in tailoring of materials. The effect of Ag15+ ion irradiation with energy 200 MeV on spray deposited V2O5 thin films of thickness 253 nm is studied at various ion doses from 5 × 1011 to 1 × 1013 ions/㎠. The XRD results of pristine film confirmed orthorhombic structure of V2O5 and its average crystallite size was found to be 20 nm. The peak at 394 cm-1 in Raman spectra confirmed O-V-O bonding of V2O5, whereas 917 cm-1 arise because of distortion in stoichiometry by a loss of oxygen atoms. Raman peaks vanished completely above the ion fluence of 5 × 1012 ions/㎠. Optical studies by UV-Vis spectroscopy shows decrement in transmittance with an increase in ion fluence up to 5 × 1012 ions/㎠. The red shift is observed both in the direct and indirect band gaps until 5 × 1012 ions/㎠. The surface topography of the pristine film revealed sheath like structure with randomly distributed spherical nano-particles. The roughness of film decreased and the density of spherical nanoparticles increased upon irradiation. Irradiation improved the conductivity significantly for fluence 5 × 1011 ions/㎠ due to band gap reduction and grain growth.