• Title/Summary/Keyword: Heavy rain special report

Search Result 4, Processing Time 0.018 seconds

An improvement on the Criteria of Special Weather Report for Heavy Rain Considering the Possibility of Rainfall Damage and the Recent Meteorological Characteristics (최근 기상특성과 재해발생이 고려된 호우특보 기준 개선)

  • Kim, Yeon-Hee;Choi, Da-Young;Chang, Dong-Eon;Yoo, Hee-Dong;Jin, Gee-Beom
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.481-495
    • /
    • 2011
  • This study is performed to consider the threshold values of heavy rain warning in Korea using 98 surface meteorological station data and 590 Automatic Weather System stations (AWSs), damage data of National Emergency Management Agency for the period of 2005 to 2009. It is in need to arrange new criteria for heavy rain considering concept of rainfall intensity and rainfall damage to reflect the changed characteristics of rainfall according to the climate change. Rainfall values from the most frequent rainfall damage are at 30 mm/1 hr, 60 mm/3 hr, 70 mm/6 hr, and 110 mm/12 hr, respectively. The cumulative probability of damage occurrences of one in two due to heavy rain shows up at 20 mm/1 hr, 50 mm/3 hr, 80 mm/6 hr, and 110 mm/12 hr, respectively. When the relationship between threshold values of heavy rain warning and the possibility of rainfall damage is investigated, rainfall values for high connectivity between heavy rain warning criteria and the possibility of rainfall damage appear at 30 mm/1 hr, 50 mm/3 hr, 80 mm/6 hr, and 100 m/12 hr, respectively. It is proper to adopt the daily maximum precipitation intensity of 6 and 12 hours, because 6 hours rainfall might be include the concept of rainfall intensity for very-short-term and short-term unexpectedly happened rainfall and 12 hours rainfall could maintain the connectivity of the previous heavy rain warning system and represent long-term continuously happened rainfall. The optimum combinations of criteria for heavy rain warning of 6 and 12 hours are 80 mm/6 hr or 100 mm/12 hr, and 70 mm/6 hr or 110 mm/12 hr.

Development of 1ST-Model for 1 hour-heavy rain damage scale prediction based on AI models (1시간 호우피해 규모 예측을 위한 AI 기반의 1ST-모형 개발)

  • Lee, Joonhak;Lee, Haneul;Kang, Narae;Hwang, Seokhwan;Kim, Hung Soo;Kim, Soojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.5
    • /
    • pp.311-323
    • /
    • 2023
  • In order to reduce disaster damage by localized heavy rains, floods, and urban inundation, it is important to know in advance whether natural disasters occur. Currently, heavy rain watch and heavy rain warning by the criteria of the Korea Meteorological Administration are being issued in Korea. However, since this one criterion is applied to the whole country, we can not clearly recognize heavy rain damage for a specific region in advance. Therefore, in this paper, we tried to reset the current criteria for a special weather report which considers the regional characteristics and to predict the damage caused by rainfall after 1 hour. The study area was selected as Gyeonggi-province, where has more frequent heavy rain damage than other regions. Then, the rainfall inducing disaster or hazard-triggering rainfall was set by utilizing hourly rainfall and heavy rain damage data, considering the local characteristics. The heavy rain damage prediction model was developed by a decision tree model and a random forest model, which are machine learning technique and by rainfall inducing disaster and rainfall data. In addition, long short-term memory and deep neural network models were used for predicting rainfall after 1 hour. The predicted rainfall by a developed prediction model was applied to the trained classification model and we predicted whether the rain damage after 1 hour will be occurred or not and we called this as 1ST-Model. The 1ST-Model can be used for preventing and preparing heavy rain disaster and it is judged to be of great contribution in reducing damage caused by heavy rain.

Investigation of Characteristics and States of Natural Disasters for Water Resources Disasters Control in Gyeongsangnam-do (경상남도 수자원재해관리를 위한 자연재해현황과 피해특성조사)

  • Park Jong-Kil;Jang Eun-Suk;Choi Hyo-Jin
    • Journal of Environmental Science International
    • /
    • v.14 no.6
    • /
    • pp.621-627
    • /
    • 2005
  • It is analysised the causes and extent of damage of natural disasters through the investigating of natural disaster states occurred in Gyeongsangnam-do. The data for this study were based on disaster annual report between 1987 and 2003. Especially, the data between 1993 and 2003 were used for the analysis in Gyeongsangnam-do area. A typhoon and a heavy rain were the major causes of the natural disasters in Gyeongsangnam-do. For all that the extent of damage by a heavy rain was twice as much as that of a typhoon, Gyongsangnam-do suffered heavy damage from a typhoon. So, special attentions should be paid to establish prevention plans for that in this area. Also, half of the natural disasters were occurred between July and August, the intensive prevention plans for the summer season are needed.

Implementation of a Web-Based Early Warning System for Meteorological Hazards (기상위험 조기경보를 위한 웹기반 표출시스템 구현)

  • Kong, In Hak;Kim, Hong Joong;Oh, Jai Ho;Lee, Yang Won
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.4
    • /
    • pp.21-28
    • /
    • 2016
  • Numeric weather prediction is important to prevent meteorological disasters such as heavy rain, heat wave, and cold wave. The Korea meteorological administration provides a realtime special weather report and the rural development administration demonstrates information about 2-day warning of agricultural disasters for farms in a few regions. To improve the early warning systems for meteorological hazards, a nation-wide high-resolution dataset for weather prediction should be combined with web-based GIS. This study aims to develop a web service prototype for early warning of meteorological hazards, which integrates web GIS technologies with a weather prediction database in a temporal resolution of 1 hour and a spatial resolution of 1 km. The spatially and temporally high-resolution dataset for meteorological hazards produced by downscaling of GME was serviced via a web GIS. In addition to the information about current status of meteorological hazards, the proposed system provides the hourly dong-level forecasting of meteorologic hazards for upcoming seven days, such as heavy rain, heat wave, and cold wave. This system can be utilized as an operational information service for municipal governments in Korea by achieving the future work to improve the accuracy of numeric weather predictions and the preprocessing time for raster and vector dataset.