• Title/Summary/Keyword: Heavy metallic components

Search Result 11, Processing Time 0.021 seconds

Recovery of Heavy-Metallic Components from a Waste Electro-polishing Solution of 316L Steel by the Solar Cell Electricity (태양전지 전력을 이용한 316L강의 전해연마 폐액 중 중금속 성분의 회수)

  • Kim, Ki-Ho;Jang, Jung-Mok
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.1
    • /
    • pp.53-57
    • /
    • 2009
  • Recovery of heavy-metallic component from a waste solution of factory was undertaken by the solar cell electricity. The solution was obtained from an electrolytic etching process of 316L stainless steel. The electrolysis of the solution for recovery of heavy metallic components was made with platinum plated titanium mesh anode and copper plate cathode. Analysis for the solution and electro-winned materials were made by EDS, XRD and SEM. Iron, chromium, and sulfur components were recovered on the cathode from the solution. Result of EDS analysis for the electro-winned materials revealed that some metal oxide were contained in the recovered material. The recovered materials were expected to have metallic form only by the electrolysis, but metal compounds were contained because of weak solar cell power. Nickel and manganese component in the solution doesn't recovered by this electrolysis process, but they made a sludge with phosphoric acid in the solution.

[ PM10 ] Concentration and Chemical Composition in a Western Region of Susan during the Spring 2003 (2003년 봄철 부산 서부지역의 PM10 농도 특성과 화학적 조성)

  • Jeon Byung-Il;Hwang Yong-Sik
    • Journal of Environmental Science International
    • /
    • v.14 no.5
    • /
    • pp.463-471
    • /
    • 2005
  • This study is designed to investigate the characteristics of $PM_{10}$ concentration and the chemical composition of heavy metallic components in the $PM_{10}$ sampled in western Busan from March to May, 2003. $PM_{10}$measurement was done during springtime of 2003, totaling 29 days: 9 days in March, 10 days in April and 10 days in May. With a sampling time of 24 hours, it started 9:00 AM on that day and ended 9:00 AM the next day. The mean contribution ratio of soil during springtime was $10.3\%$. Al had a significant correlation with Ca, Fe, Mg and Si and little correlation with Na, Ni and Zn.

Size Distribution and Source Identification of Airborne Particulate Matter and Metallic Elements in a Typical Industrial City

  • Ny, Mai Tra;Lee, Byeong-Kyu
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.1
    • /
    • pp.9-19
    • /
    • 2010
  • The size distribution of airborne particulate matter (PM) and the concentrations of associated metallic elements were investigated in a busy urban region of a typical Korean industrial city. The PM concentrations measured during the spring, except for those in the size range of 1.1 to 2.1 ${\mu}m$, were slightly higher than the PM concentrations in the summer. Coarse particles contributed greatly to the variation in PM concentrations in the spring, while fine and submicron particles contributed largely to the variation in PM concentrations in the summer. The difference in size modes of the PM concentrations between spring and summer may be explained by the Asian dust effect and its accompanying wind direction and speed. Extremely high enrichment factors (EFs) values (6,971 to 60,966) for all of the size distributions in PM were identified for cadmium (Cd). High EFs values (12 to 907) were also identified for other heavy metals including Cr, Cu, Ni, Pb, Zn and Mn. Low EF values (0.29 to 8.61) were identified for Ca, K, Mg and Na. These results support the common hypothesis that most heavy metals in ambient PM have anthropogenic sources and most light metals have crustal sources. The results of principal components analyses and cluster analyses for heavy metals indicate that the principal sources of PM and metals were emissions from non-ferrous metal smelters, oil combustion, incinerators, vehicular traffic and road dust.

Study on Chemical Characterization of $PM^{10}$ Observed in Korean Peninsula, 1998 ~ 2001

  • Bang, So-Young;Oh, S.N.;Choi, J.C.;Choi, B.C
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.61-64
    • /
    • 2003
  • This study was conducted to investigate the chemical characteristics of $PM^{10}$ at Anmyeon-do during the periods from January 1998 to December 2001. The $PM^{10}$ samples ($PM^{10}$) were collected by High Volume Air sampler (HVAS). The measured items were mass concentration of $PM^{10}$ with the major ions ($Cl^{-}$, ${SO_{4}}^{2-}$, ${NO_3}^{-}$, ${Mg}^{2+}$, ${Ca}^{2+}$, ${K}^{+}$etc.) and metallic elements (AI, Fe, Mn, Cr, Zn, Pb etc.). The chemical analysis of major ion components were made by Ion Chromatography (DX-500) and that of metallic elements were made by Inductively Coupled Plasma Spectrometer (ICP-AES, ICP-Mass). The average mass concentration of $PM^{10}$ increased substantially during the heavy dust periods (Asian Dust cases). For water-soluble ions, concentrations of ${Ca}^{2+}$, ${SO_{4}}^{2-}$ and ${NO_3}^{-}$ were remarkably enhanced. Concentrations and mass fraction of crustal elements such as Na, Mg, Ca, Fe, Mn were highly elevated, but those of pollution-derived heavy metals were appreciably decreased. The factor analysis was conducted in order to make the large and diverse data set as manageable levels and to qualitatively examine the relationship between the variables.

  • PDF

Recovery of Heavy-Metallic Components by the Solar Cell Electricity from Wasted Electro-polishing Solution of 316L Steel (태양전지 전력을 이용한 316L강의 전해연마 폐액 중 중금속 성분의 회수)

  • Kim, Gi-Ho;Seo, Tae-Yong;Jang, Jeong-Mok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.129-131
    • /
    • 2008
  • 태양전지에서 발생되는 전력을 이용하여 중금속 성분이 함유된 공장 폐수에서 중금속 성분을 전착 회수하는 내용의 연구 및 장치를 개발하였다. 공장 폐수는 316L강을 전해연마한 후 배출되는 용액을 사용하였으며, 양극은 백금도금된 티타늄망을, 음극은 순수 동판을 사용하여 전해에 의해 중금속 성분을 전착시켰다. 전해액 및 전착 금속에 대한 분석도 이루어졌다.

  • PDF

A Study on the Characteristics of Concentrations of Atmospheric Aerosols in Pusan (부산지역의 입자상 대기오염물질의 농도특성에 관한 연구)

  • 최금찬;유수영;전보경
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.2
    • /
    • pp.41-48
    • /
    • 2000
  • This study has been carried out to determine the seasonal characteristics of concentration of various ionic (CI-, NO3-, SO42-, Na+, NH+, K+, Ca2+) and heavy metallic (Pb, Mn, Cu, Ni) species in Pusan from August 1997 to April 1998. The concentrations of CI-, Na+, K+ were higher during summer with 2.98 ${\mu}{\textrm}{m}$/㎥. Seasonal variation of total concentration of but the concentration of NH4+ was higher during winter with 2.46${\mu}{\textrm}{m}$/㎥. Seasonal variation of total concentration of heavy metals(Pb, Cu, Mn, Ni) were 186.0 ng/㎥ in summer, 222.6 ng/㎥ in autumn, and 135.83 ng/㎥ in winter. Over the seasons inspected, the concentration of Mn was higher in coarse particles than fine particles and concentration of Ni was higher in fine particles than coarse particles. during yellow sand period, the concentration of TSP was increased about two times than that of other period. SO42-, Ca2+ concentrations were higher than other ionic components because of soil particles. The concentration of Ni showed 94.62ng/㎥ was increased about 4~5 times than other period. Principal component of the yellow sand, SO42-, Ca2+ could be discreased by rainfall and washout effect of atmospheric aerosol was higher in coarse particles than fine particles. Results from PCA(principal component analysis) showed that major pollutant was NaCl by seasalt particulate and (NH4)2SO4.

  • PDF

ENVIRONMENTAL FATIGUE OF METALLIC MATERIALS IN NUCLEAR POWER PLANTS - A REVIEW OF KOREAN TEST PROGRAMS

  • Jang, Changheui;Jang, Hun;Hong, Jong-Dae;Cho, Hyunchul;Kim, Tae Soon;Lee, Jae-Gon
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.929-940
    • /
    • 2013
  • Environmental fatigue of the metallic components in light water reactors has been the subject of extensive research and regulatory interest in Korea and abroad. Especially, it was one of the key domestic issues for the license renewal of operating reactors and licensing of advanced reactors during the early 2000s. To deal with the environmental fatigue issue domestically, a systematic test program has been initiated and is still underway. The materials tested were SA508 Gr.1a low alloy steels, 316LN stainless steels, cast stainless steels, and an Alloy 690 and 52M weld. Through tests and subsequent analysis, the mechanisms of reduced low cycle fatigue life have been investigated for those alloys. In addition, the effects of temperature, dissolved oxygen level, and dissolved hydrogen level on low cycle fatigue behaviors have been investigated. In this paper, the test results and key analysis results are briefly summarized. Finally, an on-going test program for hot-bending of 347 stainless steel is introduced.

The Metallic Composition of PM2.5 and PM10 in a Northeast Region of Seoul During the Spring 2001 (2001년 봄철 서울시 북동부지점에서 관측한 중금속성분의 농도분포)

  • Choi, Gyoo-Hoon;Kang, Chang-Hee;Kim, Ki-Hyun
    • Journal of the Korean earth science society
    • /
    • v.23 no.6
    • /
    • pp.514-525
    • /
    • 2002
  • The analysis of heavy metals associated with both PM2.5 and PM10 fraction of aerosols was made from a northeast region of Seoul during the spring period of 2001. The mean concentrations of fine (PM2.5), coarse (PM10-PM2.5), and PM10 fraction were observed as 49.3${\pm}$29.2, 50.5${\pm}$35.0, and 95.5${\pm}$46.1 ${\mu}g$/m$^3$, respectively during this study period. According to the results of enrichment factor (EF) analysis between different particle fractions, major elements (including Fe, Ca, Na, and K) were found to exhibit EF values of less than 10. However, heavy metal components (like Zn and Pb) showed very high EF values. Comparison of fine/coarse (F/C) concentration ratio showed that Zn, Cr, Pb, and Ni have higher ratio values than others. The metallic composition of particles was also compared on both absolute and relative terms. The results of our analysis showed an evidence that the increase in the total metallic contents is prominent during the spring period due mostly to the Asian Dust event.

Treatment of Abandoned Coal Mine Discharged Waters Using Lime Wastes

  • Park Joon-Hong;Kim Hee-Joung;Yang Jae-E.;Ok Yong-Sik;Lee Jai-Young;Jun Sang-Ho
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.10a
    • /
    • pp.59-61
    • /
    • 2005
  • In Korea, hundreds of abandoned and closed coal and metallic mines are present in the steep mountain valleys due to the depression of the mining industry since the late 1980s. From these mines, enormous amounts of coal waste were dumped on the slopes, which causes sedimentation and acid mine drainage (AMD) to be discharged directly into streams causing detrimental effects on soil and water environments. A limestone slurry by-product (lime cake) is produced from the Solvay process in manufacturing soda ash. It has very fine particles, low hydraulic conductivities ($10^{-8}{\sim}10^{-9}cm/sec$), high pH, high EC due to the presence of CaO, MgO and $CaCl_2$ as major components, and traces of heavy metals. Due to these properties, it has potential to be used as a neutralizer for acid-producing materials. A field plot experiment was used to test the application of lime cake for reclaiming coal wastes. Each plot was 20 x 5 m (L x W) in size on a 56% slope. Treatments included a control (waste only), calcite ($CaCO_3$), and lime cake. The lime requirement (LR) for the coal waste to pH 7.0 was determined and treatments consisted of adding 100%, 50%, and 25% of the LR. The lime cake and calcite were also applied in either a layer between the coal waste and topsoil or mixed into the topsoil and coal waste. Each plot was hydroseeded with grasses and planted with trees. In each plot, surface runoff and subsurface water were collected. The lime cake treatments increased the pH of coal waste from 3.5 to 6, and neutralized the pH of the runoff and leachate of the coal waste from 4.3 to 6.7.

  • PDF

A Study on Leaching of Vanadium and Nickel from Incineration Ash of Heavy Oil Fly Ash (중유회 소각재로부터 바나듐, 니켈 침출에 관한 기초적 연구)

  • 유연태;김병규;박경호;홍성웅
    • Resources Recycling
    • /
    • v.4 no.3
    • /
    • pp.32-39
    • /
    • 1995
  • Thc purpose of this study is to develop the efficient process for recovering vanadium and nickel from the incineralionash of the oil fly ash. In this paper, the physical and chemical properties of the incineration ash was examined, and theleaching characteristics of the incineration ash were investigated by water leaching and sulEuric acid leaching tcsls. The incinerationash of oil fly ash was mainly consisted of oxldes such as V,09, V,O,, NaVO,, Ni,(VO,)Z, Fe,O,, CaSO,, SiO,.Thc waler leaching showed low extraction of metallic components, while the sulfunc acid lcaching with high temperahlreand pressure increased the extraction of vanadium and nickcl considerably. For instance, the exlraction rates of the metalllccomponents on the sulfuric acid leaching were 99% for V and 45% for Ni at 90$^{\circ}$C with pH 0.5 H,SO,, and were86% for V and 75% far Ni at ZOO"C(64 psi) with pH 1.0 H-SO,. with pH 1.0 H-SO,.

  • PDF