• Title/Summary/Keyword: Heavy metal contaminated sediment

Search Result 65, Processing Time 0.021 seconds

Acid Mine Drainage and Heavy Metal Contamination of Stream Sediments in the Okdongcheon Stream, Sangdong Area, South Korea (강원도 상동지역 옥동천의 광산 산성수 및 하상퇴적물의 중금속 오염)

  • Cheong, Young Wook;Thornton, Iain
    • Economic and Environmental Geology
    • /
    • v.27 no.1
    • /
    • pp.101-113
    • /
    • 1994
  • Geochemical investigations based on measurements of water parameters and sampling of stream sediments have been carried out, in the Okdongcheon stream and its tributaries in the Sangdong area of South Korea. There are two main problems occurring in the Okdongcheon stream: an acid mine drainage in the upper reaches and toxic trace metal contamination of the stream sediments mainly in the lower reaches. Acid mine water originating from coal mining was neutralized at the confluence of the Cheonpyongcheon stream whilst suspended solids due to flocculation of iron in water caused turbidity which was undesirable. Sediments in the Okdongcheon stream have been contaminated by mining activites. Iron was heavily concentrated in sediments in the upper Okdongcheon whilst toxic trace metals including Pb, Cu, Zn, Co, Cd, As and Bi were accumulated in sediments at stations draining metallic mining areas and near the tailings dam. There is now a requrement to neutralise the acid mine drainage and to use site-specific analysis of biological communities to ensure the conservation and preservation of aquatic organisms.

  • PDF

Physio-Chemical Characteristics of Soil, Stream Sediment and Soil Water Contaminated by the Abandoned Coal Mine in Keumsan, Chungnam (충남(忠南) 금산(錦山) 폐탄광지역(廢炭鑛地域)의 토양(土壤), 하상퇴적물(河床堆積物) 및 토양수(土壤水)의 이화학적(理化學的) 특성(特性))

  • Min, Ell Sik;Kim, Myung Hee;Song, Suckhwan
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.3
    • /
    • pp.324-333
    • /
    • 1997
  • The research has been made for the effects of the pollution by the abandoned coal mine drainage on the physical and chemical properties of soil, stream sediment and soil water. The soils overspreaded by the abandoned coal don't develop solum and the bulk density is $1.83g/m^3$, compared with $1.14-1.38g/m^3$ in the other forest soils. The soil pH range in coal bearing region ie, from 4.01 to 4.11 and non-coal bearing soil range is from 5.03 to 5.13. Heavy metals such as As, Cr, Ni, Mo and Ba of coal bearing soils and polluted stream sediments have larger concentration than those of non-coal content and non-polluted. Especially As and Mo concentrations are largely high in coal bearing. The relative ratios $K_2O/Na_2O$ of geochemical elements are higher in coal bearing soil and polluted stream sediments than those of non-coal bearing soils and non-polluted stream sediments as well as black shales of the Changri Formation. However, $MgO+Fe_2O_3+TiO_2/CaO+K_2O$ are the opposite trends, so that the ratios are lower in the polluted regions. The soil water pHs in the polluted regions are the strong acid(pH3.4-4.2) and buffer capacity of the polluted soil is low because canons such as $Na^+$, $K^+$, $Mg^{+2}$are leached by the acidification.

  • PDF

Characterization of Heavy Metals in the Stream Sediment around an Old Zinc Mine (가학광산 지역 하천 저니토 중금속의 화학적 특성)

  • Yoo, Sun-Ho;Ro, Kwang-Jun;Lee, Sang-Mo;Park, Moo-Eon;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.4
    • /
    • pp.432-438
    • /
    • 1996
  • This study was carried out to prepare information for the establishment of countermeasures for an area contaminated with minewaste from an old zinc mine at Kahak-long in Kwangmyong. Minewaste and bottom sediments from the streams in this area were sampled and were analyzed for Cd, Cu, Pb, and Zn extracted with different solution. Total heavy metal contents in both minewaste and bottom sediments were fairly high. Cadmium and Zn contents in the minewaste and Cd, Cu, Pb, and Zn contents in the bottom sediments extracted with 0.1 N HCl showed a much higher level than those in the background level of paddy soils and in the soils around the other metal mines regardless of the distance from the mine. Sulfide/residue forms of Cd, Cu, Pb, and Zn covered the highest portions for the minewaste. For bottom sediments, sulfide/residue forms of Cu and Zn formed the highest portions, whereas the contents of both carbonate and sulfide/residue forms of Cd and Pb were significant. The lower the pH of the extracting solutions, the more heavy metals extracted from both minewaste and bottom sediments.

  • PDF

Environmental Pollutants in Streams of Andong District and Insect Immune Biomarker (안동지역 하천의 환경오염물질과 곤충면역 생체지표 분석)

  • Ryoo Keon Sang;Ko Seong-Oon;Cho Sunghwan;Lee Hwasung;Kim Yonggyun
    • Korean journal of applied entomology
    • /
    • v.44 no.2
    • /
    • pp.97-108
    • /
    • 2005
  • Samples of water, soil, and sediment were taken from 10 streams near Andong, Korea in May 2004. To assess the degree of environmental pollution of each stream, chemical pollutants such as total notrogen (T-N), total phosphorus (T-P), chemical oxygen demand (COD), heavy metals, organophosphorus pesticides, organochlorine pesticides, and dioxin-like PCB congeners were analyzed by standard process tests or U.S. EPA methods. In addition, biomarkers originated from insect immune systems of beet armyworm, Spodoptera exigua, were used to analysis of the environmental samples. Except Waya-chun stream showing T-N content of 9.12 mg/L, most streams were contaminated with relatively low levels of overall pollutants in terms of T-N, T-P, and COD, compared to their acceptable environmental levels designated by the Ministry of Environment. Contents of Pb and Cd in samples of each stream were much lower than environmentally permissible levels. However, several times higherconcentrations of Pb and Cd were found in locations at Mi-chun, Kilan-chun, and Hyunha-chun streams, in comparison with other streams. Diazinon, parathion, and phenthoate compounds among organophosphorus pesticides were detected as concentrations of 0.19, 0.40, and $1.13\;{\mu}g/g$, respectively, from soil sample collected in the vicinity of Mi-chun stream. On the other hand, 16 organochlorine pesticides and 12 dioxin-like PCB congeners, known as endocrine disrupting chemicals, selected in this study were not found above the limit of detection. Biomarker analyses using insect immune responses indicated that Waya-chun stream was suspected as exposure to environmental pollutants. Limitation and compensation of both environmental analysis techniques are discussed.

Self-purification Mechanisms in Natural Environments of Korea: I. A Preliminary Study on the Behavior of Organic/Inorganic Elements in Tidal Flats and Rice Fields (자연 정화작용 연구: I. 갯벌과 농지 상층수중 유 ${\cdot}$ 무기 원소의 거동에 관한 예비 연구)

  • Choi, Kang-Won;Cho, Yeong-Gil;Choi, Man-Sik;Lee, Bok-Ja;Hyun, Jung-Ho;Kang, Jeong-Won;Jung, Hoi-Soo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.3
    • /
    • pp.195-207
    • /
    • 2000
  • Organic and inorganic characteristics including bacterial cell number, enzyme activity, nutrients, and heavy metals have been monitored in twelve acrylic experimental tanks for two weeks to estimate and compare self-purification capacities in two Korean wet-land environments, tidal flat and rice field, which are possibly different with the environments in other countries because of their own climatic conditions. FW tanks, filled with rice field soils and fresh water, consist of FW1&2 (with paddy), FW3&4 (without paddy), and FW5&6 (newly reclaimed, without paddy). SW tanks, filled with tidal flat sediments and salt water, are SW1&2 (with anoxic silty mud), SW3&4 (anoxic mud), and SW5&6 (suboxic mud). Contaminated solution, which is formulated with the salts of Cu, Cd, As, Cr, Pb, Hg, and glucose+glutamic acid, was spiked into the supernatent waters in the tanks. Nitrate concentrations in supernatent waters as well as bacterial cell numbers and enzyme activities of soils in the FW tanks (except FW5&6) are clearly higher than those in the SW tanks. Phosphate concentrations in the SW1 tank increase highly with time compared to those in the other SW tanks. Removal rates of Cu, Cd, and As in supematent waters of the FW5&6 tanks are most slow in the FW tanks, while the rates in SW1&2 are most fast in the SW tanks. The rate for Pb in the SW1&2 tanks is most fast in the SW tanks, and the rate for Hg in the FW5&6 tanks is most slow in the FW tanks. Cr concentrations decrease generally with time in the FW tanks. In the SW tanks, however, the Cr concentrations decrease rapidly at first, then increase, and then remain nearly constant. These results imply that labile organic materials are depleted in the FW5&6 tanks compared to the FW1&2 and FW3&4 tanks. Removal of Cu, Cd, As from the supernatent waters as well as slow removal rates of the elements (including Hg) are likely due to the combining of the elements with organic ligands on the suspended particles and subsequent removal to the bottom sediments. Fast removal rates of the metal ions (Cu, Cd, As) and rapid increase of phosphate concentrations in the SW1&2 tanks are possibly due to the relatively porous anoxic sediments in the SW1&2 tanks compared to those in the SW3&4 tanks, efficient supply of phosphate and hydrogen sulfide ions in pore wates to the upper water body, complexing of the metal ions with the sulfide ions, and subsequent removal to the bottom sediments. Organic materials on the particles and sulfide ions from the pore waters are the major factors constraining the behaviors of organic/inorganic elements in the supernatent waters of the experimental tanks. This study needs more consideration on more diverse organic and inorganic elements and experimental conditions such as tidal action, temperature variation, activities of benthic animals, etc.

  • PDF