• Title/Summary/Keyword: Heavy metal adsorbent

Search Result 115, Processing Time 0.017 seconds

Preparation of Acrylic Acid Grafted Polypropylene by Electron Beam Irradiation and Heavy Metal Ion Adsorption Property (전자선 조사를 이용한 아크릴산이 그라프트된 폴리프로필렌의 제조 및 중금속 이온 흡착 특성)

  • Cheon, Ja young;Jeun, Joon-pyo
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.335-341
    • /
    • 2019
  • In this study, an acrylic acid (AAc) was grafted on a polypropylene (PP) nonwoven fabric using electron beam irradiation. Electron beam grafting was carried out under various conditions to produce AAc grafted PP (PP-g-AAc) nonwoven fabric having a grafting yield of about 50% at radiation dose of 100 kGy and a monomer concentration of 60%. The physical and chemical properties of PP-g-AAc nonwoven fabric were evaluated by SEM, ATR-FTIR, thermal analysis and tensile strength. The morphology of PP and PP-g-AAc nonwoven fabric confirmed by SEM showed no significant change, and it was judged that AAc was introduced into PP nonwoven fabric from ATR-FTIR. PP-g-AAc nonwoven fabric showed an increase in tensile strength and a decrease in tensile strain compared to PP nonwoven fabric. However, since change of value is not significant, it is considered that there is no significant influence on the physical characterization. Adsorption experiments of PP-g-AAc nonwoven fabric on various ions showed selective adsorption behavior for lead ion. In conclusion, the electron beam radiation-induced PP-g-AAc nonwoven fabric is expected to be applied as an effective adsorbent for the adsorption of lead ions.

Soil Washing and Effluent Treatment for Contaminated Soil with Toxic Metals (유해원소로 오염된 토양 세척 및 세척수의 처리)

  • Yang, Jung-Seok;Hwang, Jin-Min;Baek, Kitae;Kwon, Man Jae
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.745-754
    • /
    • 2013
  • This study evaluated the optimal soil washing conditions for toxic metals considering the removal efficiency of toxic metals from contaminated soils as well as from soil washing effluents. In the contaminated soils, As was the major contaminant and extracted by sodium hydroxide solution better than by sulfuric acid. However, in the case of the treatment of soil washing effluents, sodium hydroxide was less effective extractant because soil organic matter extracted by sodium hydroxide prevented the solid-liquid phase separation and toxic metal removal. In the treatment of soil washing effluents with sulfuric acid, toxic metals in the effluents were mostly precipitated at the pH above 6.5. In addition, granular ferric oxide (GFO) as an adsorbent enhanced the removal of As and Pb indicating that toxic metals in the washing effluents can be removed almost completely by the use of combined adsorption-neutralization process. This study suggests that soil washing techniques for toxic metals should be optimized based on the physical and chemical properties of the contaminated soils, the nature of chemical extractant, and the removal efficiency and effectiveness of toxic metals from the soils as well as soil washing effluents.

Feasibility of Activated-Carbon Adsorbent to Sequester Sunken Hazardous and Noxious Substances (HNS) (흡착제를 이용한 침강 HNS 처리 및 현장적용 가능성 연구 - 현장 처리를 위한 활성탄소 활용 조건 검토 및 제안 -)

  • Choi, Ki-young;Kim, Chang-joon;Kim, Hye-eun;Jung, Jun-mo;Hwang, Ho-jin;Lee, Moonjin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.858-863
    • /
    • 2020
  • We experimented with the particle-settling velocity and CHCl3 absorption efficiency of seven activated-carbon and analyzed seven heavy metal contents by elution for application to the field treatment of sunken HNS on the marine seabed. The mean particle-settling velocity was in the range 0.5-8 cm/s, except when the 8-20 mesh was used. The larger the HNS particle, the faster the particle-settling velocity was, and the CHCl3 absorption efficiency increased considerably owing to the larger surface area. In addition, the elution test results showed that the total Zn and As contents in >100-meshed activated carbon was higher than the contents criteria for the standard for water-treatment agents, and Cr, Zn, and As were released at higher concentrations than those released by other activated-carbon groups. Taken together, the CHCl3 absorption efficiency, settling velocity, and elution test results suggested that the 20-60, 20-40, and 2mm&down mesh activated-carbon adsorbents could be applied to the field treatment of HNSs and that the minimum required amount for field treatment were 0.82, 0.90, and 1.28 ton/㎘, respectively, as calculated based on the HNS-adsorption-capacity priority.

Quality Improvement of Crude Glycerol from Biodiesel Production Using Activated Carbon Derived from Krabok (Irvingia malayana) Seed Shells

  • Wuttichai Roschat;Sarunya Donrussamee;Phatcharanan Smanmit;Samlit Jikjak;Tappagorn Leelatam;Sunti Phewphong;Krittiyanee Namwongsa;Preecha Moonsin;Vinich Promarak
    • Korean Journal of Materials Research
    • /
    • v.34 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • This research investigated the preparation of activated carbon derived from Krabok (Irvingia malayana) seed shells to improve the quality of crude glycerol obtained during biodiesel production. The activated carbon was prepared using a dry chemical activation method with NaOH, utilizing an innovative biomass incinerator. The results revealed that the resulting KC/AC-two-step exhibited favorable physicochemical adsorption properties, with a high surface area of 758.72 m2/g and an iodine number of 611.10 mg/g. These values meet the criteria of the industrial product standard for activated carbon No. TIS 900-2004, as specified by the Ministry of Industry in Thailand. Additionally, the adsorption efficiency for methylene blue reached an impressive 99.35 %. This developed activated carbon was then used to improve the quality of crude glycerol obtained from biodiesel production. The experimental results showed that the KC/AC-two-step increased the purity of crude glycerol to 73.61 %. In comparison, commercially available activated carbon (C/AC) resulted in a higher crude glycerol purity of 81.19 %, as analyzed by the GC technique. Additionally, the metal content (Zn, Cu, Fe, Pb, Cd, and Na) in purified glycerol using KC/AC-two-step was below the standards for heavy metals permitted in food and cosmeceuticals by the Food and Drug Administration of Thailand and the European Committee for Food Contact Materials and Articles. As a result, it can be inferred that Krabok seed shells have favorable properties for producing activated carbon suitable as an adsorbent to enhance crude glycerol purity. Furthermore, the improved crude glycerol from this research has potential for various industrial applications.

Materialistic Characterization of Waste Egg Shell and Fundamental Studies for Its Application to Wastewater Treatment (폐달걀껍질의 활용을 위한 물성조사 및 폐수처리 응용에의 기초연구)

  • Kuh, Sung-Eun;Kim, Dong-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.733-742
    • /
    • 2000
  • Fundamental materialistic characterization and adsorption/neutralization behavior of waste egg shell for heavy metal ion have been studied for its application to wastewater treatment. To investigate the structural change and thermal decomposition characteristics of egg shell. X-ray diffraction and FT-IR analysis were conducted for egg shell treated at $105^{\circ}C$ and $700^{\circ}C$, respectively. For the result of FT-IR analysis, the sample treated at $700^{\circ}C$ showed a reduced C-O absorption band compared with that of egg shell treated at $105^{\circ}C$, which may be due to the $CO_2$ release. Unlike to the result of FT-IR analysis, the XRD patterns of egg shell were almost similar for the cases of $105^{\circ}C$ and $700^{\circ}C$ treatment. however, characteristic diffraction pattern of CaO was observed for $850^{\circ}C$ treatment, at which $CaCO_3$ is known to be completely converted to CaO. TGA/DTA analysis showed a slow decline in weight loss up to $600^{\circ}C$ and, for $600{\sim}800^{\circ}C$ range, the weight loss became drastic by reason of $CO_2$ discharge, which was accompanied by an appearance of major endothermic peak. The ratio of practical breakthrough time to ideal one, total transfer unit, and mass transfer coefficient were observed to be increased as the adsorption was progressed in a multiple-column fixed-bed reactor using egg shell as an adsorbent, which signified the distribution effect of mass transfer for continuous adsorption reaction. The neutralization effect of egg shell for several types of acidic wastewater made of different mineral acids was not much different from each other except for the case of $H_2SO_4$, for which the neutralization reaction was thought to be retarded by the formation of gypsum.

  • PDF