• 제목/요약/키워드: Heavy metal adsorbent

검색결과 115건 처리시간 0.026초

Preparation and characterization of green adsorbent from waste glass and its application for the removal of heavy metals from well water

  • Rashed, M. Nageeb;Gad, A.A.;AbdEldaiem, A.M.
    • Advances in environmental research
    • /
    • 제7권1호
    • /
    • pp.53-71
    • /
    • 2018
  • Waste glass disposal causes environmental problems in the cities. To find a suitable green environmental solution for this problem low cost adsorbent in this study was prepared from waste glass. An effective new green adsorbent was synthesized by hydrothermal treatment of waste glass (WG), followed by acidic activation of its surface by HCl (WGP). The prepared adsorbent was characterized by scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD), and BET surface measurement. The developed adsorbent was used for the removal of heavy metals (Cd, Cu, Fe, Pb and Zn) from well water. Batch experiments were conducted to test the ability of the prepared adsorbent for the removal of Cd, Cu, Fe, Pb and Zn from well water. The experiments of the heavy metals adsorption by adsorbent (WGP) were performed at different metal ion concentrations, solution pH, adsorbent dosage and contact time. The Langmuir and Freundlich adsorption isotherms and kinetic models were used to verify the adsorption performance. The results indicated high removal efficiencies (99-100%) for all the studied heavy metals at pH 7 at constant contact time of 2 h. The data obtained from adsorption isotherms of metal ions at different time fitted well to linear form of the Langmuir sorption equation, and pseudo-second-order kinetic model. Application of the resulted conditions on well water demonstrated that the modified waste glass adsorbent successfully adsorbed heavy metals (Cd, Cu, Fe, Pb and Zn) from well water.

맥반석과 점토로 성형한 흡착제에 의한 수중의 중금속 흡착 (Adsorption of Heavy Metals by the Mixture of Macbansuk and Clay)

  • 연익준;김광렬
    • 환경위생공학
    • /
    • 제14권4호
    • /
    • pp.150-157
    • /
    • 1999
  • According to the fact that Macbansuk and clay are very porous, we produced combined adsorbent and we investigated the removing capacity of adsorbent to toxic heavy metal (Pb, Cu) in the single and mixed solution.Then the experimental parametars were pH, reaction time and amount of adsorbent. And we studied possibility of adsorbent by applying to the Freundlich isotherm. As raising the pH of single and mixed solution in range 2~5, the maximum adsorption capability was investigated in range 3~4. When Cu and Pb were applied to Freundlich isotherm, l/n were 0.291 and 0.513 respectively. In the case of mixed solution with both, l/n value was 0.614. In this study, we concluded that the combined adsorbent treated toxic heavy metal is possible under 100 ppm of its concentration.

  • PDF

농산 폐기물인 Allium속 뿌리를 이용한 Ni와 Pb 이온 제거 (Removal of Ni and Pb Ion from Aqueous Solution by the Agricultural Wastes, Allium Roots)

  • 김성호;백승화;김운성;문광현
    • 한국식품영양학회지
    • /
    • 제11권6호
    • /
    • pp.595-599
    • /
    • 1998
  • A batch experiment was conducted to evaluate the removal capacity of welsh onion(Allium fistulosum L.), shallot (Allium ascalonicum L.), garlic (Allium sativum L.) roots as an adsorbent for Ni and Pb in aqueous solution. One gram of the dried Allium root powder was reacted in 100ml of solution containing 10mg of each heavy metal and effects of metal concentration, pH, temperature, and size of adsorbent on the removal efficiency were evaluated. The results were as follows ; The amount of adsorption of heavy metal ions were higher with the smaller particles size of adsorbent. Garlic root was high adsorption capacity of Pb, especially. The higher concentration of heavy metal solution was, the more amount of adsorption of heavy metals was. The adsorption ratio was differed from a kind of heavy metal. As the temperature increased, the amount of adsorption of Ni and Pb by shallot and welsh onion were decreased. The amount of adsorption of Ni was high under alkali conditions but the amount of adsorption of Pb was high under neutral and acidity condition.

  • PDF

수용액 중에서 Polyamine계 유기응집제를 이용한 중금속 이온의 흡착 - 키토산의 분자량과 탈아세틸화도 - (An Investigation for the Adsorption of Heavy Metal Ions by Polyamine Organic Adsorbent from the Aqueous Solution - The Influence of Molecular Weight and Degree of Deacetylation of Chitosan -)

  • 박영미;전동원
    • 한국의류산업학회지
    • /
    • 제8권4호
    • /
    • pp.458-464
    • /
    • 2006
  • The adsorption ability of heavy metal ions from the aqueous solution by chitosan, which it is well known natural biopolymer, has been investigated. The fundamental study in this research is focusing on the physicochemical adsorption utilizing the chitosan as a organic chelating adsorbent, adsorb especially heavy metal ions from the waste liquid solution. The adsorption ability of the chitosan between metal ions, having different characteristics with Mw of 188,600, 297,200, and 504,200 g/mol and degree of deacetylation (DD) of 86.92% and 100% were investigated targeting on the $Ni^{2+}$, $Co^{2+}$, $Zn^{2+}$, and $Pb^{2+}$ ions, respectively. The uptake of heavy metal ions with chitosan was performed by atomic absorption flame emission spectrophotometer (AAS) as conducted residual metal ions. It was found that chitosan has an strong adsorption capacity for some metals under certain conditions. Chitosan, which have 100% degree of deacetylation showed high adsorption recovery ratio and have an affinity for all kinds of heavy metals. In contrast, the molecular weight of chitosan was not completely affected on metal ion adsorption.

굴껍질을 이용한 도금폐수의 중화 및 중금속 이온 제거 (Neutralization and removal of heavy metal ions in Plating wastewater utilizing Oyster Shells)

  • 성낙창;김은호;김정권;김형석
    • 한국환경보건학회지
    • /
    • 제22권3호
    • /
    • pp.81-87
    • /
    • 1996
  • The purpose of this research is to examine the utilization of oyster shells for neutralization and removal of heavy metal ions in plating wastewater, because oyster shells have been known to be very porous, to have high specific surface area and to have alkaline minerals such as calcium and magnesium. The results obtianed from this research showed that oyster shells had a buffer capacity to neutralize an acidic.alkali system in plating wastewater. Generally, it could be showed that the removal efficiencies of heavy metal ions were very influenced by reaction times and oyster shell dosages. In point of ocean waste, if oyster shells substituted for a valuable adsorbent such as actviated carbon, they could look forward to an expected economical effect.

  • PDF

엽록체를 이용한 수중에서의 중금속 흡착 및 탈착 특성 (Biosorption and Desorption Characteristics of Heavy metal ion in Aqueous Solution by Chlorophyll)

  • 연익준;신택수;이명선;주소영;김광렬
    • 환경위생공학
    • /
    • 제14권1호
    • /
    • pp.80-87
    • /
    • 1999
  • According to the fact that algae, which is usually used as a biosorbent, contains chlorophyll, we used the chlorophyll as an adsorbent. In this study, chlorophyll is immobilized by agar, which was made of platan, oak, ginkgo and pine. We investigated the removing capacity of biosorbents to toxic heavy metals (Pb, CU, Cd, Zn) in the single ion solution. Then the experimental parameters were pH, reaction time and concentration of heavy metal ions.The optimum conditions for the adsorption of heavy metals were as follows : pH range was 4~5, reaction time was 40mon, and the highest ratio of the removing rate was 50~70 ppm. The order of the amount of Pb, Cu and Cd removed was specified as oak > ginkgo > pine > platan in these conditions and as pine > ginkgo > oak > platan at Zn. Fro the results of the desorption experiments, we found that the heavy metal with the highest ratio of desorption in the single ion adsorbent was Cu.

  • PDF

화학적으로 개질된 알긴산의 중금속 제거능 (Heavy Metal Removal Capacity of Chemically Modified Alginic Acid)

  • 이순홍;김광국;이상훈
    • 한국물환경학회지
    • /
    • 제21권6호
    • /
    • pp.569-574
    • /
    • 2005
  • In this study, alginic acid that had an high affinity for a heavy metal and was noted for biological adsorbent was modified by an oxidizer, $KMnO_4$. Chemical modification changed hydroxyl of the alginic acid into carboxyl and compare with alginic acid, modified alginic acid exhibited a characteristics that carboxyl groups are comparatively high. For the use of them as an adsorbent, beads were prepared by dropping alginic acid and modified alginic acid solution in dilute 2 wt% $CaCl_2$ solution for non water soluble. The amount of removed $Cu^{2+}$ and $Pb^{2+}$ by modified alginic acid beads showed 84.7 mg and 90.9 mg per gram of beads, respectively. And it showed the amount of adsorbed heavy metal ions 10~20% higher than that of alginic acid beads in range of pH 4~7. In particular, modified alginic acid have a good adsorption capacity for $Cu^{2+}$ and $Pb^{2+}$ by Freundlich adsorption isotherm. According to this study, it is verified that alginic acid that is a nature high molecular substance improved capacity for actual application by increased heavy metal adsorption capacity by chemical modification.

커피 찌꺼기를 이용한 폐수중의 중금속 제거 (Removal of Heavy Metal in Wastewater with Coffee Grounds)

  • 신현곤;김충곤
    • 유기물자원화
    • /
    • 제22권2호
    • /
    • pp.44-49
    • /
    • 2014
  • 본 연구는 원두커피찌꺼기를 이용하여 중금속제거 특성을 알아보고자 납, 크롬, 카드뮴을 포함한 인조폐수에 미리 세척과 건조를 행한 원두커피찌꺼기를 흡착제로 사용하여 농도와 pH를 변화시키면서 실험하였다. 실험결과 모든 중금속은 30분 내에 대부분 흡착되었고, pH 변화에 따라 최대 80% 제거효율을 보였다. 또한 크롬은 pH가 증가함에 따라 제거율은 감소하는 것으로 나타났다. 본 연구 결과 원두커피찌꺼기는 중금속제거에 있어서 매우 효과적인 것으로 나타났으며 폐기물 재활용과 환경오염 방지 효과와 함께 경제성 있는 흡착제로 사용이 가능할 것으로 판단되어진다.

AN ENGINEERING SCALE STUDY ON RADIATION GRAFTING OF POLYMERIC ADSORBENTS FOR RECOVERY OF HEAVY METAL IONS FROM SEAWATER

  • Prasad, T.L.;Saxena, A.K.;Tewari, P.K.;Sathiyamoorthy, D.
    • Nuclear Engineering and Technology
    • /
    • 제41권8호
    • /
    • pp.1101-1108
    • /
    • 2009
  • The ocean contains around eighty elements of the periodic table and uranium is also one among them, with a uniform concentration of 3.3 ppb and a relative abundance factor of 23. With a large coastline, India has a large stake in exploiting the 4 billion tonnes of uranium locked in seawater. The development of radiation grafting techniques, which are useful in incorporating the required functional groups, has led to more efficient adsorbent preparations in various geometrical configurations. Separation based on a polymeric adsorbent is becoming an increasingly popular technique for the extraction of trace heavy metals from seawater. Radiation grafting has provided definite advantages over chemical grafting. Studies related to thermally bonded non woven porous polypropylene fiber sheet substrate characterization and parameters to incorporate specific groups such as acrylonitrile (AN) into polymer back bones have been investigated. The grafted polyacrylonitrile chains were chemically modified to convert acrylonitrile group into an amidoxime group, a chelating group responsible for heavy metal uptake from seawater/brine. The present work has been undertaken to concentrate heavy metal ions from lean solutions from constant potential sources only. A scheme was designed and developed for investigation of the recovery of heavy metal ions such as uranium and vanadium from seawater.

DEVELOPMENT OF ADSORBENT USING BYPRODUCTS FROM KOREAN MEDICINE FOR REMOVING HEAVY METALS

  • Kim, S.W.;Lim, J.L.
    • Environmental Engineering Research
    • /
    • 제12권1호
    • /
    • pp.1-7
    • /
    • 2007
  • Most of the herb residue producing from oriental medical clinics(OMC) and hospitals(OMH) is wasted in Korea. To develop of adsorbent for removing heavy metal from wastewater, the various pre-treatment methods of the herb residue were evaluated by potentiometric titration, Freundlich isotherm adsorption test and the kinetic adsorption test. The herb residue was pre-treated for increasing the adsorption capacity by cleaning with distilled water, 0.1 N HCl and 0.1 N NaOH and by heating at $370^{\circ}C$ for 30 min. It showed a typical weak acid-weak base titration curve and a short pH break like commercial activated carbon during photentiometric titration of pre-treated herb residue. The log-log plots in the Freundlich isotherm test were linear on the herb residue pre-treated with NaOH or HCl like commercial activated carbon. The adsorption capacity(qe) in the Freundlich isotherm test for $Cr^{6+}$ was 1.5 times higher in the pre-treated herb residue with HCl than in activated carbon. On the other hand the herb residue pre-treated with NaOH showed the good adsorption capacities for $Pb^{2+}$, $Cu^{2+}$ and $Cd^{2+}$ even though those adsorption capacities were lower than that of activated carbon. In kinetic test, most of heavy metals removed within the first 10 min of contact and then approached to equilibrium with increasing contact time. The removal rate of heavy metals increased with an increase of the amount of adsorbent. Likewise, the removal rates of heavy metals were higher in the herb residue pre-treated with NaOH than in that pre-treated with HCl. The adsorption preference of herb residues pre-treated with NaOH or HCl was $Pb^{2+}>Cu^{2+}$ or $Cd^{2+}>Cr^{6+}$ in the order. Conclusively, the herb residue can be used as an alternative adsorbent for the removal of heavy metals depending on pr-treatment methods.