• Title/Summary/Keyword: Heavy metal (Lead

Search Result 584, Processing Time 0.022 seconds

Effects of Heavy Metal and pH on Bacterial Growth Isolated from the Contaminated Smelter Soil (제련소 인근 토양에서 분리한 박테리아 생장에 미치는 중금속 및 pH 영향)

  • Keum, Mi-Jung;Yoon, Min-Ho;Nam, In-Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.4
    • /
    • pp.113-121
    • /
    • 2015
  • The contaminated soil at abandoned smelter areas present challenge for remediation, as the degraded materials are typically deficient in nutrients, and rich in toxic heavy metals and metalloids. Bioremediation technique is to isolate new strains of microorganisms and develop successful protocols for reducing metal toxicity with heavy metal tolerant species. The present study collected metal contaminated soil and characterized for pH and EC values, and heavy metal contents. The pH value was 5.80, representing slightly acidic soil, and EC value was 13.47 mS/m. ICP-AES analytical results showed that the collected soil samples were highly contaminated with various heavy metals and metalloids such as lead (183.0 mg/kg), copper (98.6 mg/kg), zinc (91.6 mg/kg), and arsenic (48.1 mg/kg), respectively. In this study, a bacterial strain, Bacillus cereus KM-15, capable of adsorbing the heavy metals was isolated from the contaminated soils by selective enrichment and characterized to apply for the bioremediation. The effects of heavy metal on the growth of the Bacillus cereus KM-15 was determined in liquid cultures. The results showed that 100 mg/L arsenic, lead, and zinc did not affect the growth of KM-15, while the bacterial growth was strongly inhibited by copper at the same concentration. Further, the ability of the bacteria to adsorb heavy metals was evaluated.

Studies on the Effect of heavy Metal on the Growth of Various Plants 1. The Effect of Cadmium and Lead (수종식물의 생육에 미치는 중금속의 영향에 관한 연구 1. Cadmium, Lead 의 영향)

  • Kim, Byung Woo
    • The Korean Journal of Ecology
    • /
    • v.5 no.4
    • /
    • pp.176-186
    • /
    • 1982
  • Uptake and effects of treated Cd and Pb in rose moss and tomato were studied in pot cultures. Three horticulural plants on the roadside were tested to determine the contents of heavy metals in plant parts. Yields of rose moss were increased by the increase Pb concentrations in soil. Yields of rose moss by Cd treatment were decreased in 1, 000 ppm group, but increased in 500 ppm group. Portulaca grandiflora Hook. proved to be tolerent of Pb and Cd added in soil. Yields of tomato were decreased by an incrase of Pb concentration in soil, and tomato proved to be weak for Pb added in soil. Pb contents in root, stem, leaf, and flower and seed of rose moss were increased by an in crease of Pb concentration in soil Pb content in root was the highest among them. Pb content was the highest in root of tomato, but the lowest in the stem. Among the heavy metal contents metal contents of three horticultural plants collected by roadside, it was the Chrysanthemum which had the highest contents of heavy metal among them. The heavy metal contents in stem were less than in the other plnat parts in all three plants. The number of flowers in rose moss was decreased by an increase of Pb, and Cd concentration in soil, but in tomato it was increased by an increase of Pb concentration in soil. Amount of rose moss seeds which were collected after cultivation was decreased by Pb, and Cd treatment in soil.

  • PDF

Heavy Metal Biosorption and its Significance to Metal Tolerance if Streptomycetes

  • Park, Jae-young;Kim, Jae-heon
    • Journal of Microbiology
    • /
    • v.40 no.1
    • /
    • pp.51-54
    • /
    • 2002
  • Heavy metal adsorptions of four streptomycetes were compared with each other, Among the test strains, Streptomyces viridochromogenes showed the most efficient metal binding activity, which was carried out by cell wall as well as freeze-dried mycelium. An order of adsorption potential (zinc > copper > lead > cadmium) was observed in single metal reactions, whereas this adsorption order was disturbed in mixed-metal reactions. The metal adsorption reactions were very fast, pH dependent and culture age-independen, suggestive of a physico-chemical reaction between cell wall components and heavy metal ions. The metal tolerant stains presented the weakest adsorbing activity, indicating that the metal biosorption was not the basis of the metal tolerance.

Microstructural Analysis of the Solidified Arsenic-containing Heavy Metal Sludge (비소를 함유한 중금속슬러지 고화체의 미세구조적 분석)

  • Kim, Yeong-Kwan;Jeong, Myoung-Sun
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.169-174
    • /
    • 1996
  • Microstructural analyses of synthetic arsenic-containing heavy metal sludges solidified with Portland cement were performed. Heavy metal sludges containing 0.04M of cadmium, chromium, copper, lead, and arsenic were prepared by sodium hydroxide precipitation and successive vacuum filtration. The sludges mixed with cement were cured for 14 days. The solidified sample was characterized by 1) leaching test, 2) scanning electron microscopy and 3) X-ray diffractometry. Of the metals tested, only Pb concentration in the leachate exceeded the Korean regulatory limit. The level of lead in the leachate was as high as 10 times the regulatory limit. X-ray analysis suggested that the metal hydroxides might be present in complex or impure crystalline phases.

  • PDF

Characteristics of heavy metal adsorption by Korean marine algae

  • Park, Jun-Sub;Park, Chang-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.252-256
    • /
    • 2005
  • Removal of heavy metal ions from aqueous solution by brown sea weeds (Hizikia fusiformis, Laminaria, and Undaria pinnatifida) was 80-96% for lead, cadmium, chromium and copper ions. Fifty percent of the adsorption was completed in 4 min. The uptake of lead and cadmium ions followed Langmuir adsorption. In the adsorption experiments using single and multi metal ions 80-95% of metal ions were removed, and the removal efficiency was the best for lead ion.

  • PDF

Chronic Heavy Metal Exposure and Gallbladder Cancer Risk in India, a Comparative Study with Japan

  • Chhabra, Deepak;Oda, Koji;Jagannath, Palepu;Utsunomiya, Hirotoshi;Takekoshi, Susumu;Nimura, Yuji
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.187-190
    • /
    • 2012
  • Background: High incidence of gallbladder cancer (GBC) is reported from North India, with elevated concentrations of heavy metals in water and soil. This Indo-Japan collaborative study compared presence of heavy metals in gallbladder tissues. Methods: Heavy metal concentrations were estimated in Indian GBC and cholecystitis tissues and compared with Japanese GBC and cholecystitis tissues. Spectrophotometry was done for 13 Indian gallbladder tissues (8 GBC, 5 cholecystitis) and 9 Japanese (5 GBC, 4 cholecystitis). Transmission electron microscopy (TEM) thin foil element analysis was done in 10 Indian samples (6 GBC, 4 cholecystitis). Results: Chromium, lead, arsenic and zinc were significantly high in Indian GBC compared with Japanese GBC. Chromium, lead and arsenic were significantly high in the Indian cholecystitis tissues compared to the Japanese. TEM of Indian tissues demonstrated electron dense deposits in GBC. Conclusion: Heavy metals-chromium, lead, arsenic and zinc are potential carcinogens in Indian GBC from endemic areas. This preliminary study links presence of heavy metals in gallbladder cancer tissues in endemic areas.

Uptake Capacity of Heavy Metals by Water Plants (수생식물의 중금속 흡수능에 관한 연구)

  • 이종화;함용규;박종안
    • Environmental Analysis Health and Toxicology
    • /
    • v.11 no.3_4
    • /
    • pp.23-32
    • /
    • 1996
  • In this study, we investgated the uptake capacity of several water plants for heavy metals (lead and cadmium) in soil of rivers where are adjacent to a industrial complex in Chun-An city and in A-San city. We also examined the deposition pattern of heavy metal in plants. The results are as follows: 1. The soil of river in Chun-An city was polluted more serious than that of A-San city. In Chun-An city, mean values of lead and cadmium contents in soil were 26.224 $\pm$ 28.037 $\mu$g/g, and 0.854 $\pm$ 1. 127 $\mu$g/g, respectively. 2. Water plants examined in this study were Slum suave KITAGAWA, Persicaria thunbergii H. GROSS, Phragmiles japonica STEUD, Echinochloa crus-galli var. frumentacea WIGHT and Persicaria hydropiper SPACH. Both metal contents of several water plants distributed in Chun-An city were higher than those in A-San city. In these plants, Slum suave showed the highest uptake capacity for lead and cadmium. The mean values of lead and cadmium contents in Slum suave were 40.957 $\pm$ 29.577 $\mu$g/g and 1. 930 $\pm$ 1. 076 $\mu$g/g, respectively. Persicaria thunbergii also showed a relatively high uptake capacity for both metal. 3. Correlation between metal contents in soil and water plants was high. In both cases of Sium suave and Persicaria thunbergii correlation coefficients were 0.605 and 0.549, respectively. 4. We analyzed lead and cadmium contents in root, stem and leaf of several water plants. Both metals were mostly deposited in root. Much of both metals were also deposited in leaf. From the results, we suggest that Slum suave KITAGAWA and Persicaria thunbegii H. GROSS can be used to reduce heavy metals from industrial waste water.

  • PDF

Effect of Heating Treatment on the Cooking Loss and Heavy Metal Residues of Porcine Variety Viscera (열처리에 의한 돈 내장근의 중량손실 및 미량 중금속 잔류에 미치는 영향)

  • 양철영
    • The Korean Journal of Food And Nutrition
    • /
    • v.7 no.4
    • /
    • pp.297-306
    • /
    • 1994
  • This experiment was carried out to investigate the healing loss and the heavy metal residues such as copper, zinc, manganese, cadmium and lead In porcine visceras by inductively coupled argon plasma spectrometer(ICP), and to probe changes when porcine visceras were boiling In water treatment(BWT), heating in autoclave treatment (HAT) and heating In oil treatment (HOT) . The range of heating loss on porcine viscera were BWT(23.11∼34.53%) , HAT(18.48∼28.00%) and HOT(14.20∼25.22%)and the heart tissue were higher and liver were lower than those of the other tissues. The total value of heavy metal residues in large intestine, small intestine, heart, kidney, liver and stomach tissue were 11.298${\pm}$5.302 ppm, 27.825${\pm}$8. 177 ppm, 16.756${\pm}$6.334 ppm 21.107${\pm}$6.057 ppm, 25.369 ${\pm}$ 10.164 ppm and 12.611 ${\pm}$5.513 ppm, respectively. Heavy metal residues in porcine visceras tended to decrease according to heating methods and the variety viscera, and the change of total heavy metal residues on BWT, HAT and HOT were 4.16∼32.57%, 12.01∼28.09% and 9.60∼25.76%, respectively. The decrease of lead element of mean value were 21.76% and copper, zinc, manganese and cadmium element were 18.00∼ 18.16%. The change of heavy metal residues were not significant in the porcine visceras(P>0.05), and the these were significantly correlated among the three heating method(P < 0.05).

  • PDF

A study on lead removal in aqueous solution using autoclaved chitosan (고온.고압 처리한 키토산을 이용한 수중의 납 제거에 관한 연구)

  • 김동석;이승원;우형택
    • Journal of Environmental Science International
    • /
    • v.12 no.12
    • /
    • pp.1269-1276
    • /
    • 2003
  • In order to know the effect of atuoclaving on the heavy metal removal using chitosan, lead removal capacities and removal rates by various chitosans in aqueous solution were compared according to the various autoclaving time. The lead removal efficiencies and removal rates by the autoclaved chitosan were found to be on the order of 15 min(98%) > 10 min(95%) > 30 min(83%) > 5 min(53%) > 60 min(47%) > 0 min(22%) chitosan. The molecular weight of chitosan was decreased by the increase of autoclaving time. Therefore, the heavy metal removal capacity was not well correlated to the molecular weight. Langmuir isotherm was well fitted to experimental results of equilibrium adsorption on chitosan. In order to examine the process of lead removal by the autoclaved chitosan, TEMs, SEMs and FT-IR analyses were used. The surface of autoclaved chitosan was much more porous and the lead removal was mainly occurred on the surface of chitosan. The structure of autoclaved chitosan was same as that of controlled chitosan.

Influence of Competing Ions and Metabolic Inhibitors on Heavy Metal Accumulation in the Cell of Heavy Metal-Tolerant Microorganisms (중금속내성균의 중금속 축적에 미치는 경쟁이온 및 대사저해제의 영향)

  • Cho, Ju-Sik;Lee, Hong-Jae;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.2
    • /
    • pp.142-148
    • /
    • 1997
  • This study was performed to develop the biological treatment technology of wastewater polluted with heavy metals. Heavy metal-tolerant microorganisms, such as Pseudomonas putida, P. aeruginosa, P. chlororaphis and P. stutzeri possessing the ability to accumulate cadmium, lead, zinc and copper, respectively, were isolated from industrial wastewaters and mine wastewaters polluted with various heavy metals. The effect of competing ions and metabolic inhibitors on heavy metal accumulation in the cells was investigated. Heavy metal accumulation into cells was drastically decreased in the presence of competing cation, $Al^{3+}$, and also decreased, at a lesser extent, in the presence of competing anions, $CO_3\;^{2-}$ and $PO_4\;^{2-}$. But heavy metal accumulation was not influenced generally in the presence of the other rations and anions. The accumulation of Cd, Zn or Cu by Cd-, Zn- or Cu-tolerant microorganism was remarkably decreased in the presence of metabolic inhibitors, but the accumulation of Pb by Pb-tolerant microorganism was little affected in the presence of metabolic inhibitors. These results suggested that the accumulation of Cd, Zn or Cu by Cd-, Zn- or Cu-tolerant microorganism was concerned with the biological activity depending on energy, and the accumulation of Pb by Pb-tolerant microorganism depended on not the biological activity but the physical adsorption on the cell surface. Each heavy metal-tolerant microorganism also exhibited some ability to accumulate the other heavy metals in solution containing equal concentrations of cadmium, lead, zinc and copper, when measured at 48 hours after inoculation of the microorganisms, but the accumulation rates were somewhat low as compared to the accumulation rates of heavy metal fitting to each tolerance. These results suggested that the accumulation of each heavy metal by each heavy metal-tolerant microorganism was a selective accumulation process.

  • PDF