• Title/Summary/Keyword: Heavy impact source

Search Result 91, Processing Time 0.024 seconds

A Study on the Pro-Environmental Energy Supply Program of Urban Enterprises on the concept of BAT(Best Available Technology): Application of Air Environmental Indices and Benefit-Cost Analysis Based (한 도시 사업체 에너지 수급의 최적화 방안 연구 - 대기오염지수와 경제성 평가를 중심으로 -)

  • Kwon, Yong-Sik;Kim, Yong-Bum;Chung, Yong
    • Journal of Environmental Impact Assessment
    • /
    • v.7 no.2
    • /
    • pp.89-102
    • /
    • 1998
  • The purpose of this study is to seek AEI(Air Environmental Indices), PSI(Pollutant Standard Index) and the urban air quality control goal(the best available alternative energy program) by assessing the best ratio of energy types used in urban enterprises, based on harmful health effect and air quality standard and costs. This study is focused on an urban area(Puchun), where area sourcees are associated with heavy traffic, large population, and its industrial sources with large emissions. In the first step, air modeling, estimation of AEI and PSI, and benefit-cost analysis were carried out. In the second step, we assessed that 660 scenarios about the ratio of B-C oil, light oil and LNG used in urban enterprises with regard to air quality and cost. In the third step, the best available alternative energy program was selected for the ratio of energy species(B-C oil, light oil and LNG) by using the lexicographic method. From the emission analysis, main source of $NO_2$ is identified as industries and air quality is evaluated according to the ratio of B-C oil, light oil and LNG used in urban enterprise. The modeling data of TSP, $SO_2$, $NO_2$, CO, $O_3$, by ISC3 and PBM are respectively $118{\mu}g/m^3$, 0.027ppm, 0.025ppm, 2.0ppm, 0.55ppm in indurstrial area. That data are close to Environmental Air Quality Standard. By means of sensitivity analysis, we obtained the difference in concentration between the areas(Nae-dong, Joong-dong) according to the ratio of B-C oil, light oil and LNG used in the industries. From the result of alternatives assessment the lowest AEI value and cost, the ratio of B-C oil, light oil and LNG are 2.5%, 20%, 77.5%, respectively.

  • PDF

Evaluation on the adsorption and desorption capabilities of filter media applied to the nonpoint source pollutant management facilities (비점오염 저감시설에 적용되는 여재의 흡착 및 탈착 능력 평가)

  • Moon, Soyeon;Hong, Jungsun;Choi, Jiyeon;Yu, Gigyung;Kim, Lee Hyung
    • Journal of Wetlands Research
    • /
    • v.17 no.3
    • /
    • pp.228-236
    • /
    • 2015
  • Urbanization causes many environmental, hydrological and ecological problems such as distortion of the natural water circulation system, increase in nonpoint source pollutants in stormwater runoff, degradation of surface water quality, and damage to the ecosystem. Due to the increase in impervious surface by urbanization, developed countries apply low impact development (LID) techniques as important alternatives to reduce the impacts of urbanization. In Korea, LID techniques were employed since 2012 in order to manage nonpoint source pollutants. LID technology is a technique for removing pollutants using a variety of physical, chemical and biological mechanisms in plants, microorganisms and filter media with the reduced effluence of stormwater runoff by mimicking natural water circulation system. These LID facilities are used in a variety of filter media, but an assessment has not been carried out for the comprehensive comparison evaluation of adsorption and desorption characteristics for the pollutant removal capacity. Therefore, this study was conducted to analyze the adsorption and desorption characteristics of various filter media used in the LID facilities such as sand, gravel, bioceramic, wood chips and bottom ash etc. in reducing heavy metals(Pb, Cu). In this study, the adsorption affinity for Pb in all filter media was higher than Cu. Pseudo second order equation and Langmuir-3 isotherm are more applicable in the adsorption kinetic model and adsorption isotherm model, respectively. As a result of the desorption experiment, the filter media does not exceed KSLT which is the hazardous substance leaching limit, showing the capability of the filter media in LID. The bioceramic and woodchip as filter medias were evaluated and exhibited excellent adsorption capacity for Pb.

Evaluation and Design of Infiltration and Filtration BMP Facility (침투 여과형 비점오염저감시설의 설계 및 평가)

  • Choi, Ji-Yeon;Maniquiz, Marla Chua;Lee, So-Young;Kang, Chang-Guk;Lee, Jung-Yong;Kang, Hee-Man;Kim, Lee-Hyung
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.5
    • /
    • pp.475-481
    • /
    • 2010
  • Lots of pollutants typically originating from urban transportation are accumulating on the paved surfaces during dry periods and are washed-off directly to the river during a storm. Also, paved surfaces are contributing to increase in peak flows and volume of stormwater flows. These are the main reasons why the water quality of rivers and lakes remain polluted and still below standards. Currently, several management practices are being applied in developed countries but the design standards are still lacking. This research was conducted to develop a treatment technology that can be useful to address the problems concerning runoff quality and quantity. A lab scale infiltration device consisting of a pretreatment tank and media zone was designed and tested for various flow regimes characterizing the low, average and high intensity rainfall. Based on the experiments, the high intensity flow resulted to increase in outflow event mean concentration (EMC) of pollutants, about twice as much as the average outflow EMC. However, 78 to 88% of the total suspended solids were captured and retained in the pretreatment tank because of sedimentation. The removal of heavy metals such as zinc and lead was greatly affected by the vertical placement of woodchip layer prior to the media zone. It was observed that the high carbon content (almost 50%) in the woodchip provided opportunity for enhancing its uptake of metal by adsorption. The findings implied that the reduction of pollutants can be greatly achieved by means of proper pretreatment to allow for settling of particles with a combination of using high carbon source media like woodchip and a geotextile mat to reduce the flow before filtering into the media zone and finally discharging to the drainage system.

Assessment of Metal Pollution of Road-Deposited Sediments and Marine Sediments Around Gwangyang Bay, Korea (광양만 내 도로축적퇴적물 및 해양퇴적물의 금속 오염 평가)

  • JEONG, HYERYEONG;CHOI, JIN YOUNG;RA, KONGTAE
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.25 no.2
    • /
    • pp.42-53
    • /
    • 2020
  • In this study, heavy metal in road-deposited sediments (RDS) and marine sediment around Gwangyang Bay area have been investigated to assess the pollution status of metals and to understand the environmental impact of RDS as a potential source of metal pollution. Zn concentration for <63 ㎛ size fraction was the highest (2,982 mg/kg), followed by Cr, Ni, Pb, Cu, As, Cd, and Hg. Metal concentrations in RDS increased with decreasing particle size and relatively higher concentrations were observed around the metal waste and recycling facilities. For particle size in RDS smaller than 125 ㎛, EF values indicated that Zn was very high enrichment and Cr, Cd, Pb were significant enrichment. The concentrations of metals in marine sediments were mostly below the TEL value of sediment quality guidelines of Korea. However, the Zn concentrations has increased by 30~40% compared to 2010 year. The amounts of Zn, Cd and Pb in less than 125 ㎛ fraction where heavy metals can be easily transported by stormwater runoff accounted for 54% of the total RDS. The study area was greatly affected by Zn pollution due to corrosion of Zn plating materials by traffic activity as well as artificial activities related to the container logistics at Gwangyang container terminal. The fine particles of RDS are not only easily resuspended by wind and vehicle movement, but are also transported to the surrounding environments by runoff. Therefore, further research is needed on the adverse effects on the environment and ecosystem.

Analyzing the impact of increase in energy price on the general price level (에너지원별 가격조정의 물가파급효과 분석)

  • Lim, Seul-Ye;Song, Tae-Ho;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.22 no.4
    • /
    • pp.376-385
    • /
    • 2013
  • There are conflicts about energy price increase among government, producer, and consumer. The supplier insists on price increase for escaping running a deficit and business continuity, but the consumer concerns about worsening profitability and price rise. This study investigates the effects of energy rate increase on national economy using input-ouput(I-O) analysis. This study attempts to analyze the effects of national economy due to Coke and hard-coal, Naphtha, Gasoline, Kerosene, Light oil, Heavy oil, Liquefied petroleum gas, Electric utilities, Manufactured gas supply and Steam and hot water supply (using input-output table for the year 2011, Korea.) The results of the sectoral price changes due to a 10% increase in energy price that is obtained from the Leontief price model are presented in article. The result of this analysis is presented: The impact of the 10% increase in electricity rate on the general price level is estimated to be 0.2196%. In case of Kerosene, the impact is 0.1222%. It shows that Electric utilities are approximately 18 times larger price inducing effect as Kerosene. Also, this study indicates 3 years results sequentially to make it possible to observe trend. Then, study suggests balancing price by making each energy source adjusted.

Geochemical Properties of Deep Sea Sediment in the Benthic Environmental Impact Experiment Site (BIS) of Korea (심해 저층환경충격 시험지역의 퇴적물 지화학적 특성)

  • Kong, Gee Soo;Hyeong, Kiseong;Choi, Hun-Soo;Chi, Sang-Bum
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.407-421
    • /
    • 2014
  • The benthic environmental impact experiment addresses environmental impacts at a specific site related to deep-sea mineral resource development. We have acquired several tens of multi- or box core samples at 31 sites within the Benthic environmental Impact Site (BIS) since 2010, aiming to examine the basic properties of surficial deep-sea sediment as a potential source for deep-water plumes. In this study, we present the geochemical properties such as major elements, rare earth elements (REEs), and heavy metal contents at the BIS. Such proxies vary distinctly according to the Facies association. The lithology of all core sediments in the BIS corresponds to both Association Ib and Association IIIb. The vertical profiles of some major elements ($SiO_2$, $Fe_2O_3$, CaO, $P_2O_5$, MgO, MnO) show noticeable differences between Association Ib and IIIb, while others ($Al_2O_3$, $TiO_2$, $Na_2O$, and $K_2O$) do not vary between Association Ib and IIIb. REEs are also distinctly different for Associations Ib and IIIb; in Association Ib, REY and HREE/LREE are uniform through the sediment section, while they increase downward in Association IIIb like the major elements; below a depth of 8 cm, REY is over 500 ppm. The metal enrichment factor (EF) evaluates the anthropogenic influences of some metals (Cu, Ni, Pb, Zn, and Cd) in marine sediments. In both Associations, the EF for Cu is over 1.5, the EF for Ni and Pb ranges from 0.5 to 1.5, and the EF for Zn and Cd are less than 0.5, indicating Cu is enriched but Zn and Cd are relatively depleted in the BIS. The vertical variations of geochemical properties between Association Ib and IIIb are shown to be clearly different, which seems to be related to the global climate changes such as the shift of Intertropical convergence zone (ITCZ).

Assessment of Performances of Low Impact Development (LID) Facilities with Vegetation (식생이 조성된 LID 시설의 효율 평가)

  • Hong, Jung Sun;Kim, Lee-Hyung
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.2
    • /
    • pp.100-109
    • /
    • 2016
  • Low impact development (LID) facilities are established for the purpose of restoring the natural hydrologic cycle as well as the removal of pollutants from stormwater runoff. Improved efficiency of LID facilities can be obtained through the optimized interaction of their major components (i.e., plant, soil, filter media, microorganisms, etc.). Therefore, this study was performed to evaluate the performances of LID facilities in terms of runoff and pollutant reduction and also to provide an optimal maintenance method. The monitoring was conducted on four LID technologies (e.g., bioretention, small wetlands, rain garden and tree box filter). The optimal SA/CA (facility surface area / catchment area) ratio for runoff reduction greater than 40% is determined to be 1 - 5%. Since runoff reduction affects the pollutant removal efficiency in LID facilities, SA/CA ratio is derived as an important factor in designing LID facilities. The LID facilities that are found to be effective in reducing stormwater runoff are in the following order: rain garden > tree box filter > bioretention> small wetland. Meanwhile, in terms of removal of particulate matter (TSS), the effectiveness of the facilities are in the following order: rain garden > tree box filter > small wetland > bioretention; rain gardens > tree box filter > bioretention > small wetland were determined for the removal of organic matter (COD, TOC), nutrients (TN, TP) and heavy metals (Cu, Pb, Cd, Zn). These results can be used as an important material for the design of LID facilities in runoff volume and pollutant reduction.

Analysis of the Reduction Effect on NPS Pollution Loads by Surface Cover Application (지표피복재 적용을 통한 비점오염원 저감효과 분석)

  • Shin, Min-Hwan;Won, Chul-Hee;Park, Woon-Ji;Choi, Young-Hun;Jang, Jeong-Ryeol;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.4
    • /
    • pp.29-37
    • /
    • 2011
  • Effect of rice straw mat and wood shaves on the reduction of runoff and nonpoint source (NPS) pollution loads from field plots were experimentally studied. Three runoff plots of $5{\times}22$ m in size and 3 % in slope were prepared on a loamy sand field. Each plot was equipped with a flume to measure runoff and collect water samples. Experimental treatments of surface cover were bare, wood shaves (1,000 kg/ha) and rice straw mat cover (3,000 kg/ha). Under radish was cultivation. During the growing season of the radish, three rainfall-runoff events were monitored. Effect of wood shaves and straw mat cover on runoff reduction was 4~30 % and 33~75 % respectively compared to control. The effect on NPS pollution reduction was 36.8 and 64.3 % in BOD, 41.1 and 80.8 % in SS, 34.0 and 56.1 % in TP and 28.0 and 56.6 % in TN respectively. It was analyzed that the reduction of runoff and NPS pollution were mainly contributed by the decrease of rainfall energy impact and flow velocity and the increase of infiltration due to the surface cover materials. Rice straw mat showed very stable soil cover while large portion of wood shaves were lost during heavy storm events. It was concluded that straw mat was an efficient cover material to reduce NPS pollution from upland fields.

Impact of Non-point Source Runoff on Water Resource Quality according to Water-Level Changes (수위 변화에 따른 비점오염의 상수원 수질 영향 분석)

  • Choi, Mi-Jin;Lee, Sang-Hyeon
    • Journal of Environmental Science International
    • /
    • v.24 no.8
    • /
    • pp.1045-1053
    • /
    • 2015
  • This study evaluated the effect of water level of water resources on water quality in Ulsan. Two reservoirs, Sayeon Dam and Hoeya Dam, were selected and water quality of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) were analyzed from 2012 to 2014. And the characteristics of precipitation were also analyzed for 70 years (1945~2014) because runoff of non-point pollutant was strongly affected by precipitation. As a result, water deterioration of Sayeon Dam and Hoeya Dam were affected in accordance with lowering water level. For example, the concentrations of COD and TN was negatively correlated with the water level when the water level of Sayeon Dam was gradually decreased in 2013. The TN concentration was increased to 1.432 mg/L from 0.875 mg/L while the lowest water level of Sayeon Dam was recorded 45 m in 2014. Additionally the concentration of COD and TN was sensitively increased with 0.213 mg/L/m and 0.058 mg/L/m on account of non-point pollutant runoff. It is indicated that hereafter a control of non-point pollutant runoff is the critical factors to maintain water resources because the contribution of non-point pollutant is expected to increase due to the frequent heavy rain events. Therefore, it is necessary to map out a specific plan for non-point pollutant control based on analyses of runoff characteristics, water pollution sources and reduction plans in water pollutants and to establish a water modelling and database system as a preventive action plan.

Assessment of Contamination and Sources Identification of Heavy Metals in Stream Water and Sediments around Industrial Complex (산업단지 유역 하천수와 퇴적물 내 중금속 오염도 평가 및 기원 추적 연구)

  • Jeong, Hyeryeong;Lee, Jihyun;Choi, Jin-Young;Kim, Kyung-Tae;Kim, Eun-Soo;Ra, Kongtae
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.3
    • /
    • pp.179-191
    • /
    • 2019
  • Heavy metals in stream water and sediments around industrial complex were studied in order to assess the contamination and to identify the potential source of metals. High variability has been observed for both dissolved and particulate phases in stream water with coefficient of variation (CV) ranging from 1.3 to 2.8. The highest metal concentrations in both phases were observed in Gunja for Ni and Cu, in Jungwang for Zn and Pb and in Shiheung for Cd, respectively. These results indicate that the different metal sources could be existing. The concentrations of the heavy metals in sediments decreased in the order of Cu>Zn>Pb>Cr>Ni>As>Cd>Hg, with mean of 2,549, 1,742, 808, 539, 163, 17.1, 5.8, $0.07mg\;kg^{-1}$, respectively. Mean of metal concentrations(except for As) in sediments showed the highest values at Shiheung stream comparing with other streams. In sediments, the percent exceedance of class II grade that metal may potentially harmful impact on benthic organism for Cr, Ni, Cu, Zn, Cd, Pb was about 57%, 62%, 84%, 60%, 68%, 81% for all stream sediments, respectively. Sediments were classified as heavily to extremely polluted for Cu and Cd, heavily polluted for Zn and Pb, based on the calculation of Igeo value. About 59% and 35% of sediments were in the categories of "poor" and "very poor" pollution status for heavy metals. Given the high metal concentrations, industrial wastes and effluents, having high concentrations of most metals originated from the manufacture and use of metal products in this region, might be discharged into the stream through sewer outlet. The streams receive significant amounts of industrial waste from the industrial facilities which is characterized by light industrial complexes of approximately 17,000 facilities. Thus, the transport of metal loads through streams is an important pathway for metal pollution in Shihwa Lake.