• Title/Summary/Keyword: Heavy cu

Search Result 1,646, Processing Time 0.028 seconds

Speciation of Heavy Metals in Sediments of the Polluted River (오염된 하천 저니에 함유된 중금속 존재형태)

  • 권오억
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.2
    • /
    • pp.25-31
    • /
    • 1996
  • The species of four heavy metals (Cr, Cu, Ni and Pb) associated with sediments (viz exchangeable, carbonates, reducible, organic and residual fractions) were determined with respect to the particle sizes and depths at four locations of the lower Kumho river. In the exchangeable fraction, 3.7~19.52% of Ni and 2.8~14.81% of Pb were found, and in the carbonates fraction 2.12~19.43% of Ni and 1.39~15.42% of Pb were found. The reducible fraction retained about 8.66~44.93% of Cr, 0.41~9.79% of Cu, 17.38~35.74% of Ni and 9.5~44.89% of Pb. In the organic fraction about 0~21.06% of Cr, 2.95~35.74% of Cu, 0~14.66% of Ni and 0~10.65% of Pb were found. The residual fraction retained about 52.6~83.53% of Cr, 63.86~86.39% of Cu, 39.66~66.16% of Ni and 39.97~71.75% of Pb. The order of release or mobility of heavy metals was Ni > Pb > Cr > Cu. Mobile fraction of heavy metals by particle sizes (1.0~0.5 mm and 0.5~0.25 mm) was found to be higher in particle sizes 1.0~0.5 mm than that of 0.5~0.25 mm. The release or mobility of heavy metals by depths (0~5 cm, 5~10 cm and 10~15 cm) was found to be higher in the upper sediments than in the lower sediments, except Cu.

  • PDF

Studies on the Adsorption Capacity of Ni, Gu, and Pb by Genus Allium in Aqueous Solution (Allium속의 Ni, Cu 및 Pb 흡착력)

  • 김성조;백승화
    • The Korean Journal of Food And Nutrition
    • /
    • v.9 no.3
    • /
    • pp.299-306
    • /
    • 1996
  • The study was performed under the various conditions, such as the edible parts and particle sizes of Allium. The concentrations, the temperartures, and the pH of heavy metal solutions to investigated their adsorption capacity of heavy metals by genus Allium. The adsorption amount of Pb by Allium in the aqueous soluton was apparently higher than that of Ni and Cu by them. The larger the particle sloe of welsh onion and shallot was, the higher the adsorption of Cu was. The adsorptlons of Cu, Ni and sorption ratio was not different. As the temperature increased, the amount of heavy metal adsorption increased in general, but the adsorption of Ni by welsh onion and wild garlic and leek, Cu by shallot, wild garlic and leek decreased. Adsorption of Pb to Allium was not affected by the different values of pH, and adsorptions of Ni and Cu were greatly affected by those of pH. Especially, the higher the pH was, the greater the Ni adsorption to Allium was, and the lower the pH was, the higher the Cu adsorption was. The correlation between the amount of components in edible parts of Allium and that of adsorption of heavy metals was significantly high In amino acids containing sulfhydryl group(-SH) and vitamin B2.

  • PDF

The Characteristics of Distribution on the Heavy Metals in Soil of Kumho River Basin (금호강안의 토양중 중금속 분포특성)

  • 양성호;강선태;권오억
    • Journal of Environmental Health Sciences
    • /
    • v.16 no.2
    • /
    • pp.83-87
    • /
    • 1990
  • This study was carried out to investigate the pollution of heavy metals in soil of seven stations from the upper spot (Yeungchun Dam) of Kumho River to the downstream(Gangchang Bridge). The results obtained were as follows: 1. The content of heavy metals in soil of Kumho River basin was highest at Gangchang Bridge [expresed in $\mu$g/g : Mn(246.0), Cd(1.90), Fe(551.2), Cu(108.2), Zn(86.4), Cr(80.2), respectively]. Whereas, the content of heavy metals expect for Mn, Cu was lowest at Yeungchun Dam [Cd(0.40), Fe(548.0), Zn(30.7), Cr(6.2), respectively] Also, the content of Cr, Zn was increased when the sampling areas are changed from upstream to downstream except for Hayang Bridge, and Hayang Bridge was the diverging point of the heavy metals content. 2. There were relatively correlated between Mn : FE, Cu, Zn, Cr, Fe : Cu, Zn, Cr(0.40 < $\left$\mid${r}\right$\mid$$ < 0.70), and were high correlated between Cd : Mn, Fe, Cu, Zn, Cu : Zn, Zn : Cr(0.70 < $\left$\mid${r}\right$\mid$$ < 0.90). Particularly, there was higest correlated between Cd : Cr, Cu : Cr(0.90< $\left$\mid${r}\right$\mid$$ < 1.0)

  • PDF

Relationship between Toxicity of Heavy Metals and Sludge Retention Time in Sequencing Batch Reactor Process (연속회분식반응조 공정에서 슬러지 체류시간과 중금속 독성의 관계)

  • Kim, Keum-Yong;Cho, Young-Cheol;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.3
    • /
    • pp.283-288
    • /
    • 2007
  • In order to elucidate the relationship between the sludge retention time(SRT) and the toxicity of heavy metals, such as copper (Cu), cadmium(Cd), and zinc(Zn), in sequencing batch reactor(SBR) process, IC50 was estimated with measuring of INT-dehydrogenase activity in variable SRTs. When the concentrations of heavy metals were increased, the activity of INT-dehydrogenase was gradually decreased indicating the heavy metals inhibit bacterial activity. Cu showed higher toxicity than Zn and Cd. $IC_{50}$ of Cu, Cd, and Zn ranged from $0.37\sim1.96$ mg/L, $15.4\sim16.9$ mg/L, and $9.70\sim23.4$ mg/L, respectively. The toxicity of Cu and Zn was reversely proportional to the length of SRT. It is probably caused by the increased concentration of extracellular polymeric substances in longer SRT which absorb heavy metals. Therefore, the operation of SBR with increased SRT is desirable in treatment of industrial wastewater containing heavy metals.

Pollution Property of Heavy Metal in Goseong Cu Mine Area, Kyungsangnam-do, Korea (경남 고성 구리광산 지역의 중금속 오염특성)

  • Jung, Chul-Hyun;Park, Hyun-Ju;Chung, Il-Hyun;Na, Choon-Ki
    • Economic and Environmental Geology
    • /
    • v.40 no.4
    • /
    • pp.347-360
    • /
    • 2007
  • In order to evaluate the degree and extent of heavy metal pollution and the environmental impacts of abandoned Cu mines in Goseong-gun, soils and paddies were collected from the mine area and have been analysed for heavy metal contents. The heavy metal contents were much higher in mountain soils than in paddy soils. Total content of heavy metals decreased in order of Cu>Zn>Pb>As>Cr>Cd in mountain soils whereas Zn>Pb>Cu>Cr>As>Cd in paddy soils. The extractable amount of heavy metals by 0.1/1N HCl decreased in order of Cu>Pb>Zn>As>Cd>Cr in mountain soils whereas Pb>Cu>Zn>As>Cd>Cr in paddy soils. Although the extraction ratios were highly various depending on the sampling site, their average values were in order of Cd(16%)>Pb(10%)>Cu(9%)>As(4.5%)>Zn-Cr(${\le}2.5%$). The soils investigated were enriched in heavy metals relative to the averages of earth crust as In order of $As{\ge}Cd$>Pb>Zn>Cu>Cr. Pollution index calculated from total or extractable heavy metals of soils indicated that the heavy metal pollution was restricted to mountain soils around abandoned Cu mines, especially the Samsan I mine. The metal contents of brown rice showed no significantly contaminated level as follows; As $nd{\sim}0.87mg/kg,\;Cd\;0.02{\sim}0.34mg/kg,\;Cu\;1.01{\sim}6.25mg/kg,\;Mn\;13.4{\sim}43.2mg/kg,\;Pb\;0.09{\sim}2.83mg/kg,\;and\;Zn\;16.5{\sim}79.1mg/kg$. From the extraction and dispersion properties of heavy metal with the soil pH ($4.5{\sim}7.8$), it can be deduced the conclusion that the heavy metal pollution is spreading in the study area mainly by the detrital migration of waste ore and gangue minerals rather than the dissolution and circulation of heavy metal.

Influence of Competing Ions and Metabolic Inhibitors on Heavy Metal Accumulation in the Cell of Heavy Metal-Tolerant Microorganisms (중금속내성균의 중금속 축적에 미치는 경쟁이온 및 대사저해제의 영향)

  • Cho, Ju-Sik;Lee, Hong-Jae;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.2
    • /
    • pp.142-148
    • /
    • 1997
  • This study was performed to develop the biological treatment technology of wastewater polluted with heavy metals. Heavy metal-tolerant microorganisms, such as Pseudomonas putida, P. aeruginosa, P. chlororaphis and P. stutzeri possessing the ability to accumulate cadmium, lead, zinc and copper, respectively, were isolated from industrial wastewaters and mine wastewaters polluted with various heavy metals. The effect of competing ions and metabolic inhibitors on heavy metal accumulation in the cells was investigated. Heavy metal accumulation into cells was drastically decreased in the presence of competing cation, $Al^{3+}$, and also decreased, at a lesser extent, in the presence of competing anions, $CO_3\;^{2-}$ and $PO_4\;^{2-}$. But heavy metal accumulation was not influenced generally in the presence of the other rations and anions. The accumulation of Cd, Zn or Cu by Cd-, Zn- or Cu-tolerant microorganism was remarkably decreased in the presence of metabolic inhibitors, but the accumulation of Pb by Pb-tolerant microorganism was little affected in the presence of metabolic inhibitors. These results suggested that the accumulation of Cd, Zn or Cu by Cd-, Zn- or Cu-tolerant microorganism was concerned with the biological activity depending on energy, and the accumulation of Pb by Pb-tolerant microorganism depended on not the biological activity but the physical adsorption on the cell surface. Each heavy metal-tolerant microorganism also exhibited some ability to accumulate the other heavy metals in solution containing equal concentrations of cadmium, lead, zinc and copper, when measured at 48 hours after inoculation of the microorganisms, but the accumulation rates were somewhat low as compared to the accumulation rates of heavy metal fitting to each tolerance. These results suggested that the accumulation of each heavy metal by each heavy metal-tolerant microorganism was a selective accumulation process.

  • PDF

Effect of Groundwater Anions and pH on the Sorption Removal of Heavy Metals by Bentonite (벤토나이트의 중금속 흡착제거에 대한 pH와 지하수 음이온의 영향)

  • 정찬호
    • Economic and Environmental Geology
    • /
    • v.33 no.1
    • /
    • pp.31-40
    • /
    • 2000
  • Sorption characteristics of Pb, Cu, Cd, and Zn onto Ca- and Na-bentonites were investigated by the batch experiments in the condition of various pHs and concentrations of groundwater major anions (${So_4}^{2-}$ and ($HCO_3$), which can form a complex with heavy metals. The sorption removal of heavy metals steadily increases as pH increases. The sorption capability about heavy metals of both Ca-bentonite and Na-bentonite is in the order of Pb>Cu>Zn>Cd. The effect of pH and selectivity of heavy metals of bentonites were explained by the change of surface charge of bentonite and the speciation of heavy metals. Na-bentonite has a little higher sorption ability about heavy metals than that of Ca-bentonite. A high sorption removal of Pb in 0.1M sulfate solution may be attributed to the precipitation of $PbSo_4$(anglesite). However, sulfate has a slight effect on the sorption of CU, Cd and Zn. More than 99% of heavy metals were removed from the 0.1 M bicarbonate solution. However, the efficiency of sorption removal of heavy metals highly decreases in the bicarbonate solution of $10^{-2}$M to $10^{-4}$M. The speciation and saturation index calculated by the WATEQ4F program indicate that the sorption of anionic complexes such as ${Pb(CO_3)_2}^{2-}$, ${Cd(CO_3)_2}^{2-}$, ${Zn(CO_3)_2}^{2-}$, ${Cu(CO_3)_2}^{2-}$ and the precipitation of the solid phases such as $PbCO_3$(cerrusite), $ZnCO_3$(smithsonite), $CdCO_3$(obtavite) are involved in sorption removal of heavy metals in bicarbonate solution. The sorption capability about heavy metals of bentonites in the presence of anions shows the following order: Pb>Cu Cd>Zn.

  • PDF

A Study on the Removal of Heavy Metals by Microorganism in the Biological Wastewater Treatment (생물학적 폐수처리 공정에서의 미생물에 의한 중금속 제거에 관한 연구)

  • Choung, Youn Kyoo;Min, Byeong Heon;Park, Joon Hwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.137-145
    • /
    • 1990
  • In this research, biological uptake of heavy metals(Cd(II), Cu(II), Zn(II)) was measured under various conditions ; pH, initial heavy metal concentration, temperature, contact time and the amount of biomass through batch test. From this research, it was found that heavy metals might be removed through adsorption and accumulation in activated sludge process. Heavy metals were highly concentrated by microbial floc in activated sludge. Also, the removal efficiency was reached up to 80~90% within and after 1 hour the increase of removal efficiency was minimal. The order of accumulation efficiency was Cu(II)>Zn(II)>Cd(II), and the bonding strength between heavy metals and microbial floc may be expressed in order of Cu(II)>Zn(II)>Cd(II).

  • PDF

Recycling of chelating agents after extraction of heavy metals contaminated in soil

  • Jung, Oh-Jin
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_3
    • /
    • pp.139-148
    • /
    • 2001
  • Heavy metals such as Cu, Ni, Cd, and Pb were chemically extract from the contaminated soils using the chelating agents, EDTA and DTPA. These chemical extraction have been focused on its applicability to a wide range of soils. Results of extractive efficiency for heavy metal follow the order : Cu-EDTA $\geq$ Ni-EDTA > Pb-EDTA > Cd-EDTA > Cu-DTPA> Pb-DTPA. This result is coincided with order of conditional formation constants(Kr) of metal-chelate agent. The second study involved the recovery of the metals and EDTA from complex solutions by an electromembrane process. The overall processes of regeneration, recovery, and reuse were evaluated. The electrochemical studies showed that copper could be chosen as an electrode to plate Cd, Cu, and Pb. At least 95% of 75 of EDTA and associated Cu or Pb could be recovered by the electromembrane process. Recovery of Cd by electodeposition was not possible with the copper electrode. The percent EDTA recovery is equal to the percentage of metal electroplated from the chelates.

  • PDF

Fraction and Mobility of Heavy Metals in the abandoned closed mine near Okdong stream sediments

  • Kim, Hee-Joung;Yang, Jae;Lee, Jai-Young;Jun, Sang-Ho
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.56-63
    • /
    • 2003
  • Fractional composition and mobility of sediments some heavy metals in Okdong stream are investigated. The fractional scheme for sediment heavy metal was made for five chemically defined heavy metal forms as adsorbed fraction, carbonate fraction, reducible fraction, organic fraction, and residual fraction (Tessier et at., 1979). The most abundant fraction of the sediment heavy metal is reducible and secondly abundant organic fraction. Adsorbed fraction is minor part of the total heavy metals. Mobilization of sediment heavy metals in stream Okdong is occur 19.8∼56.7% of total cadmium concentrate. The most abundant fraction of the sediment metal is organic fraction in Cu, Pb metals investigated. Labile fraction of sediment metals are 0.5%∼48.5% of total Zn, 2.6%∼48.1% of total Pb, 0.2∼36.9% of total Cu respectively, Most of labile fraction consists of reducible fraction for Cd, Zn, adsorbed fraction for Pb, reducible fraction for Cu, adsorbed fraction for Ni. The Mobilization of Zn and Cu is most likely to occur when oxygen depletes and that of Pb and Ni occurs when physical impact, oxygen depletion and pH reduction.

  • PDF